8-Pin, 8-Bit CMOS Microcontroller

Devices included in this Data Sheet:

- PIC12C508
- PIC12C508A
- PIC12C509
- PIC12C509A

Note: Throughout this data sheet PIC12C508(A) refers to the PIC12C508 and PIC12C508A. PIC12C509(A) refers to the PIC12C509 and PIC12C509A. PIC12C5XX refers to the PIC12C508, PIC12C508A, PIC12C509 and PIC12C509A.

High-Performance RISC CPU:

- Only 33 single word instructions to learn
- All instructions are single cycle ($1 \mu \mathrm{~s}$) except for program branches which are two-cycle
- Operating speed: DC - 4 MHz clock input DC - 1μ s instruction cycle

Device	EPROM	RAM
PIC12C508	512×12	25
PIC12C508A	512×12	25
PIC12C509	1024×12	41
PIC12C509A	1024×12	41

- 12-bit wide instructions
- 8-bit wide data path
- Seven special function hardware registers
- Two-level deep hardware stack
- Direct, indirect and relative addressing modes for data and instructions
- Internal 4 MHz RC oscillator with programmable calibration
- In-circuit serial programming

Peripheral Features:

- 8-bit real time clock/counter (TMR0) with 8-bit programmable prescaler
- Power-On Reset (POR)
- Device Reset Timer (DRT)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code-protection
- Power saving SLEEP mode
- Wake-up from SLEEP on pin change
- Internal weak pull-ups on I/O pins
- Internal pull-up on $\overline{M C L R}$ pin
- Selectable oscillator options:
- INTRC: Internal 4 MHz RC oscillator
- EXTRC: External low-cost RC oscillator
- XT: Standard crystal/resonator
- LP: Power saving, low frequency crystal

CMOS Technology:

- Low power, high speed CMOS EPROM technology
- Fully static design
- Wide operating voltage range
- Wide temperature range:
- Commercial: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Industrial: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Extended: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Low power consumption
- < 2 mA @ 5V, 4 MHz
$-15 \mu \mathrm{~A}$ typical @ 3V, 32 KHz
$-<1 \mu \mathrm{~A}$ typical standby current
Pin Diagram

Device Differences

Device	Voltage Range	Oscillator	Oscillator Calibration (BIts)	Process Technology (Microns)
PIC12C508A	$3.0-5.5$	See Note 1	6	0.7
PIC12LC508A	$2.5-5.5$	See Note 1	6	0.7
PIC12C508	$2.5-5.5$	See Note 1	4	0.9
PIC12C509A	$3.0-5.5$	See Note 1	6	0.7
PIC12LC509A	$2.5-5.5$	See Note 1	6	0.7
PIC12C509	$2.5-5.5$	See Note 1	4	0.9

Note 1: If you change from the PIC12C50X to the PIC12C50XA, please verify oscillator characteristics in your application.
Note 2: See Section 7.2.5 for OSCCAL implementation differences.

TABLE OF CONTENTS

1.0 General Description4
2.0 PIC12C5XX Device Varieties 7
3.0 Architectural Overview9
4.0 Memory Organization 13
5.0 I/O Port 21
6.0 Timer0 Module and TMR0 Register 23
7.0 Special Features of the CPU 27
8.0 Instruction Set Summary 39
9.0 Development Support 51
10.0 Electrical Characteristics - PIC12C508/PIC12C509/PIC12LC508/PIC12LC509 57
11.0 DC and AC Characteristics - PIC12C508/PIC12C509/PIC12LC508/PIC12LC509 73
12.0 Electrical Characteristics - PIC12C508A/PIC12C509A/PIC12LC508A/PIC12LC509A 77
13.0 DC and AC Characteristics - PIC12C508A/PIC12C509A/PIC12LC508A/PIC12LC509A 91
14.0 Packaging Information. 95
NDEX 101
PIC12C5XX Product Identification System 105

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please check our Worldwide Web site at: http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

1.0 GENERAL DESCRIPTION

The PIC12C5XX from Microchip Technology is a family of low-cost, high performance, 8 -bit, fully static, EPROM/ROM-based CMOS microcontrollers. It employs a RISC architecture with only 33 single word/ single cycle instructions. All instructions are single cycle ($1 \mu \mathrm{~s}$) except for program branches which take two cycles. The PIC12C5XX delivers performance an order of magnitude higher than its competitors in the same price category. The 12 -bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8 -bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.
The PIC12C5XX products are equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR) and Device Reset Timer (DRT) eliminate the need for external reset circuitry. There are four oscillator configurations to choose from, including INTRC internal oscillator mode and the power-saving LP (Low Power) oscillator mode. Power saving SLEEP mode, Watchdog Timer and code protection features also improve system cost, power and reliability.
The PIC12C5XX are available in the cost-effective One-Time-Programmable (OTP) versions which are suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers while benefiting from the OTP's flexibility.
The PIC12C5XX products are supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a ' C ' compiler, fuzzy logic support tools, a low-cost development programmer, and a full featured programmer. All the tools are supported on IBM ${ }^{\circledR}$ PC and compatible machines.

1.1 Applications

The PIC12C5XX series fits perfectly in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. The EPROM technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low-cost, low-power, high performance, ease of use and I/O flexibility make the PIC12C5XX series very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic and PLD's in larger systems, coprocessor applications).

TABLE 1-1: PIC12CXXX \& PIC12CEXXX FAMILY OF DEVICES

		PIC12C508(A)	PIC12C509(A)	PIC12CE518	PIC12CE519	PIC12C671	PIC12C672	PIC12CE673	PIC12CE674
Clock	Maximum Frequency of Operation (MHz)	4	4	4	4	10	10	10	10
Memory	EPROM Program Memory	512×12	1024×12	512×12	1024×12	1024×14	2048×14	1024×14	2048×14
	RAM Data Memory (bytes)	25	41	25	41	128	128	128	128
Peripherals	EEPROM Data Memory (bytes)	-	-	16	16	-	-	16	16
	Timer Module(s)	TMR0							
	AD Converter (8-bit) Channels	-	-	-	-	4	4	4	4
Features	Wake-up from SLEEP on pin change	Yes							
	Interrupt Sources	-	-			4	4	4	4
	I/O Pins	5	5	5	5	5	5	5	5
	Input Pins	1	1	1	1	1	1	1	1
	Internal Pull-ups	Yes							
	In-Circuit Serial Programming	Yes							
	Number of Instructions	33	33	33	33	35	35	35	35
	Packages	8-pin DIP, JW, SOIC	$\begin{aligned} & \text { 8-pin DIP, } \\ & \text { JW } \end{aligned}$	$\begin{aligned} & \text { 8-pin DIP, } \\ & \text { JW } \end{aligned}$					

All PIC12CXXX \& PIC12CEXXX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.
All PIC12CXXX \& PIC12CEXXX devices use serial programming with data pin GP0 and clock pin GP1.

PIC12C5XX

NOTES:

2.0 PIC12C5XX DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC12C5XX Product Identification System at the back of this data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in ceramic side brazed package, is optimal for prototype development and pilot programs.
The UV erasable version can be erased and reprogrammed to any of the configuration modes.

> Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing the part.

Microchip's PICSTART ${ }^{\oplus}$ PLUS and PRO MATE ${ }^{\oplus}$ programmers all support programming of the PIC12C5XX. Third party programmers also are available; refer to the Microchip Third Party Guide for a list of sources.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates or small volume applications.

The OTP devices, packaged in plastic packages permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround Production (SQTP ${ }^{\text {SM }}$) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.
Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

PIC12C5XX

NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC12C5XX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC12C5XX uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8 -bit wide data word. Instruction opcodes are 12 -bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle ($1 \mu \mathrm{~s}$ @ 4 MHz) except for program branches.
The table below lists program memory (EPROM) and data memory (RAM) for each PIC12C5XX device.

Device	EPROM	RAM
PIC12C508	512×12	25
PIC12C508A	512×12	25
PIC12C509	1024×12	41
PIC12C509A	1024×12	41

The PIC12C5XX can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC12C5XX has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC12C5XX simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC12C5XX device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.
The ALU is 8 -bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.
The W register is an 8 -bit working register used for ALU operations. It is not an addressable register.
Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.
A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1.

FIGURE 3-1: PIC12C5XX BLOCK DIAGRAM

TABLE 3-1: PIC12C5XX PINOUT DESCRIPTION

Name	$\begin{aligned} & \text { DIP } \\ & \text { Pin \# } \end{aligned}$	SOIC Pin \#	I/O/P Type	Buffer Type	Description
GP0	7	7	I/O	TTL/ST	Bi-directional I/O port/ serial programming data. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. This buffer is a Schmitt Trigger input when used in serial programming mode.
GP1	6	6	I/O	TTL/ST	Bi-directional I/O port/ serial programming clock. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. This buffer is a Schmitt Trigger input when used in serial programming mode.
GP2/T0CKI	5	5	I/O	ST	Bi-directional I/O port. Can be configured as TOCKI.
GP3/MCLR/VPP	4	4	1	TTL/ST	Input port/master clear (reset) input/programming voltage input. When configured as $\overline{M C L R}$, this pin is an active low reset to the device. Voltage on $\overline{M C L R} / \mathrm{VPP}$ must not exceed VDD during normal device operation or the device will enter programming mode. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. Weak pull-up always on if configured as $\overline{M C L R}$. ST when in $\overline{M C L R}$ mode.
GP4/OSC2	3	3	I/O	TTL	Bi-directional I/O port/oscillator crystal output. Connections to crystal or resonator in crystal oscillator mode (XT and LP modes only, GPIO in other modes).
GP5/OSC1/CLKIN	2	2	I/O	TTL/ST	Bidirectional IO port/oscillator crystal input/external clock source input (GPIO in Internal RC mode only, OSC1 in all other oscillator modes). TTL input when GPIO, ST input in external RC oscillator mode.
VDD	1	1	P	-	Positive supply for logic and I/O pins
Vss	8	8	P	-	Ground reference for logic and I/O pins

Legend: $I=$ input, $O=$ output, $I / O=$ input/output, $P=$ power, $-=$ not used, $T T L=T T L$ input,
ST = Schmitt Trigger input

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., Gото) then two cycles are required to complete the instruction (Example 3-1).
A fetch cycle begins with the program counter (PC) incrementing in Q1.
In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCKINSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.0 MEMORY ORGANIZATION

PIC12C5XX memory is organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one STATUS register bit. For the PIC12C509(A) with a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Select Register (FSR).

4.1 Program Memory Organization

The PIC12C5XX devices have a 12 -bit Program Counter (PC) capable of addressing a $2 \mathrm{~K} \times 12$ program memory space.
Only the first 512×12 (0000h-01FFh) for the PIC12C508(A) and $1 \mathrm{~K} \times 12$ (0000h-03FFh) for the PIC12C509(A) are physically implemented. Refer to Figure 4-1. Accessing a location above these boundaries will cause a wrap-around within the first 512×12 space (PIC12C508(A)) or $1 \mathrm{~K} \times 12$ space (PIC12C509(A)). The effective reset vector is at 000h, (see Figure 4-1). Location 01FFh (PIC12C508(A)) or location 03FFh (PIC12C509(A)) contains the internal clock oscillator calibration value. This value should never be overwritten.

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC12C5XX

Note 1: Address 0000h becomes the effective reset vector. Location 01FFh (PIC12C508(A)) or location 03FFh (PIC12C509(A)) contains the MOVLW XX INTERNAL RC oscillator calibration value.

4.2 Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: special function registers and general purpose registers.
The special function registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports), and the File Select Register (FSR). In addition, special purpose registers are used to control the I/O port configuration and prescaler options.
The general purpose registers are used for data and control information under command of the instructions.
For the PIC12C508(A), the register file is composed of 7 special function registers and 25 general purpose registers (Figure 4-2).
For the PIC12C509(A), the register file is composed of 7 special function registers, 25 general purpose registers, and 16 general purpose registers that may be addressed using a banking scheme (Figure 4-3).

4.2.1 GENERAL PURPOSE REGISTER FILE

The general purpose register file is accessed either directly or indirectly through the file select register FSR (Section 4.8).

FIGURE 4-2: PIC12C508(A) REGISTER FILE MAP

FIGURE 4-3: PIC12C509(A) REGISTER FILE MAP

FSR<6:5>	$\longrightarrow 00$	01
File Address		
00h	INDF ${ }^{(1)}$	20h
〉 01h	TMR0	
02h	PCL	
03h	STATUS	Addresses map
04h	FSR	addresses
05h	OSCCAL	in Bank 0.
06h	GPIO	2Fh
07h		
0Fh	General	
	Purpose	
	Registers	
	10h	30h
	1Fh $\begin{array}{ll}\text { General } \\ & \text { Purpose } \\ & \text { Registers }\end{array}$	General
		Purpose
		Registers
		3Fh

Note 1: Not a physical register. See Section 4.8

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral functions to control the operation of the device (Table 4-1).

The special registers can be classified into two sets. The special function registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

TABLE 4-1: SPECIAL FUNCTION REGISTER (SFR) SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets ${ }^{(2)}$
N/A	TRIS	I/O control registers								--11 1111	--11 1111
N/A	OPTION	Contains control bits to configure Timero, Timer0/WDT prescaler, wake-up on change, and weak pull-ups								11111111	11111111
00h	INDF	Uses contents of FSR to address data memory (not a physical register)								xxxx xxyx	uxulu vuux
01h	TMR0	8-bit real-time clock/counter								xxxx xxxy	גרגuג
$02 h^{(1)}$	PCL	Low order 8 bits of PC								11111111	11111111
03h	STATUS	GPWUF	\cdots	PA0	TO	$\overline{\mathrm{PD}}$	Z	DC	C	0001 1xxx	q00q qumua ${ }^{(3)}$
04h	$\begin{array}{\|l} \hline \text { FSR } \\ (12 \mathrm{C} 508 / \\ 12 \mathrm{C} 508 \mathrm{~A}) \end{array}$	Indirect data memory address pointer								111x xxxx	111u Luxut
04h	$\begin{array}{\|l\|} \hline \text { FSR } \\ (12 C 509 / \\ 12 C 509 A) \end{array}$	Indirect data memory address pointer								110x xxxx	11uu vumu
05h	$\begin{aligned} & \hline \text { OSCCAL } \\ & (12 C 508 / \\ & 12 \mathrm{C} 509) \end{aligned}$	CAL3	CAL2	CAL1	CAL0	-	-	-	-	0111 ----	uגuxu ----
05h	$\begin{array}{\|l\|} \hline \text { OSCCAL } \\ (12 \mathrm{C} 508 \mathrm{~A} \\ 12 \mathrm{C} 509 \mathrm{~A}) \end{array}$	CAL5	CAL4	CAL3	CAL2	CAL1	CALO	/ת)	\cdots	1000 00--	แuıu zu--
06h	GPIO	\cdots	-	GP5	GP4	GP3	GP2	GP1	GP0	--xx xxxx	--uux vuux

Legend: Shaded boxes = unimplemented or unused, - = unimplemented, read as ' 0 ' (if applicable) $x=$ unknown, $u=$ unchanged, $q=$ see the tables in Section 7.7 for possible values.
Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.6 for an explanation of how to access these bits.
2: Other (non power-up) resets include external reset through $\overline{M C L R}$, watchdog timer and wake-up on pin change reset.
3: If reset was due to wake-up on pin change then bit $7=1$. All other resets will cause bit $7=0$.

4.3 STATUS Register

This register contains the arithmetic status of the ALU, the RESET status, and the page preselect bit for program memories larger than 512 words.
The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the $Z, D C$ or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\mathrm{TO}}$ and $\overline{\mathrm{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000 u uluu (where $\mathrm{u}=$ unchanged).
It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS register because these instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions, which do affect STATUS bits, see Instruction Set Summary.

FIGURE 4-4: STATUS REGISTER (ADDRESS:03h)

4.4 OPTION Register

The OPTION register is a 8 -bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A RESET sets the OPTION<7:0> bits.

Note:. If TRIS bit is set to ' 0 , the wake-up on change and pull-up functions are disabled for that pin; i.e, note that TRIS overrides OPTION control of GPPU and GPWU.
Note: It the ToCS bit is set to ' 1 , GP2 is forced to be an input even if TRIS GP2 $={ }^{\circ} 0$.

FIGURE 4-5: OPTION REGISTER

W-1								
GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	W = Writable bit $U=$ Unimplemented bit - $\mathrm{n}=$ Value at POR reset Reference Table 4-1 for other resets.
bit7	6	5	4	3	2	1	bit0	
bit 7:	GPWU: Enable wake-up on pin change (GP0, GP1, GP3)$\begin{aligned} & 1=\text { Disabled } \\ & 0=\text { Enabled } \end{aligned}$							
bit 6:	$\overline{\text { GPPU: Enable weak pull-ups (GP0, GP1, GP3) }}$$\begin{aligned} & 1=\text { Disabled } \\ & 0=\text { Enabled } \end{aligned}$							
bit 5:	TOCS : Timer0 clock source select bit```1 = Transition on TOCKI pin 0= Transition on internal instruction cycle clock, Fosc/4```							
bit 4:	TOSE:Timer0 source edge select bit 1 = Increment on high to low transition on the TOCKI pin $0=$ Increment on low to high transition on the TOCKI pin							
bit 3:	PSA: Prescaler assignment bit 1 = Prescaler assigned to the WDT $0=$ Prescaler assigned to Timer0							
bit 2-0:	PS2:PS0: Prescaler rate select bits							
	Bit Value	Timer	te WD					
	000	$1:$						
	001	$1:$						
	010	$1:$						
	011							
	100							
	101							
	110							
	111							

4.5 OSCCAL Register

The Oscillator Calibration (OSCCAL) register is used to calibrate the internal 4 MHz oscillator. It contains four to six bits for calibration. Increasing the cal value increases the frequency. See Section 7.2.5 for more information on the internal oscillator.

FIGURE 4-6: OSCCAL REGISTER (ADDRESS 8Fh)

R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	U-0	U-0	
CAL3	CAL2	CAL1	CALO	-	-	-	-	$\mathrm{R}=$ Readable bit
bit7							bit0	$\begin{aligned} & \mathrm{W}=\text { Writable bit } \\ & \mathrm{U}=\text { Unimplemented bit, } \\ & \quad \text { read as ' } 0 \text { ' } \\ & -\mathrm{n}=\text { Value at POR reset } \end{aligned}$
bit 7-4: CAL<3:0>: Calibration bit 3-0: Unimplemented: Read as ' 0 '								

FIGURE 4-7: OSCCAL REGISTER (ADDRESS 8Fh)PIC12C508A/C509A

R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
CAL5	CAL4	CAL3	CAL2	CAL1	CALO	-	-	$\begin{aligned} & R=\text { Readable bit } \\ & W=\text { Writable bit } \\ & U=\text { Unimplemented bit, } \\ & \quad \text { read as ' } 0 \text { ' } \\ & -n=\text { Value at POR reset } \end{aligned}$
bit7							bit0	
bit 7-2: bit 1-0:	AL<5: Unimple	Calibr ented:	ad as					

4.6 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.
For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to $\mathrm{PC}<7: 0>$. Bit 5 of the STATUS register provides page information to bit 9 of the PC (Figure 48).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, $\mathrm{PC}<8>$ does not come from the instruction word, but is always cleared (Figure 4-8).
Instructions where the PCL is the destination, or Modify PCL instructions, include MOVWF PC, ADDWF PC , and BSF PC, 5 .

Note: Because PC<8> is cleared in the call instruction, or any Modify PCL instruction, all subroutine calls or computed jumps are limited to the first 256 locations of any program memory page (512 words long).
FIGURE 4-8: LOADING OF PC BRANCH INSTRUCTIONS PIC12C5XX

4.6.1 EFFECTS OF RESET

The Program Counter is set upon a RESET, which means that the PC addresses the last location in the last page i.e., the oscillator calibration instruction. After executing MOVLW XX, the PC will roll over to location 00 h , and begin executing user code.
The STATUS register page preselect bits are cleared upon a RESET, which means that page 0 is preselected.
Therefore, upon a RESET, a GOTO instruction will automatically cause the program to jump to page 0 until the value of the page bits is altered.

4.7 Stack

PIC12C5XX devices have a 12 -bit wide L.I.F.O. hardware push/pop stack.
A CALL instruction will push the current value of stack 1 into stack 2 and then push the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will pop the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2. Note that the W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.
Upon any reset, the contents of the stack remain unchanged, however the program counter (PCL) will also be reset to 0 .

Note 1: There are no STATUS bits to indicate stack overflows or stack underflow conditions.
Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL and RETLW instructions.

4.8 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

- Register file 07 contains the value 10 h
- Register file 08 contains the value 0Ah
- Load the value 07 into the FSR register
- A read of the INDF register will return the value of 10 h
- Increment the value of the FSR register by one ($\mathrm{FSR}=08$)
- A read of the INDR register now will return the value of 0 Ah .
Reading INDF itself indirectly ($F S R=0$) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).
A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING
 NEXT clrf INDF ; clear INDF register
 incf FSR,F ;inc pointer
 $$
\text { btfsc FSR, } 4 \text {;all done? }
$$
 goto NEXT ;NO, clear next
 CONTINUE
 ;YES, continue

The FSR is a 5 -bit wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.
The FSR<4:0> bits are used to select data memory addresses 00h to 1 Fh .
PIC12C508(A): Does not use banking. FSR $<7: 5>$ are unimplemented and read as '1's.
PIC12C509(A): Uses FSR<5>. Selects between bank 0 and bank 1. FSR $<7: 6>$ is unimplemented, read as ' 1 '

FIGURE 4-9: DIRECT/INDIRECT ADDRESSING

Note 1: For register map detail see Section 4.2.
Note 2: PIC12C509(A) only

5.0 I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (e.g., MOVF GPIO, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers are all set.

5.1 GPIO

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP5:GP0). Bits 7 and 6 are unimplemented and read as '0's. Please note that GP3 is an input only pin. The configuration word can set several I/O's to alternate functions. When acting as alternate functions the pins will read as ' 0 ' during port read. Pins GPO, GP1, and GP3 can be configured with weak pull-ups and also with wake-up on change. The wake-up on change and weak pull-up functions are not pin selectable. If pin 4 is configured as $\overline{M C L R}$, weak pullup is always on and wake-up on change for this pin is not enabled.

5.2 TRIS Register

The output driver control register is loaded with the contents of the W register by executing the TRIS $£$ instruction. A '1' from a TRIS register bit puts the corresponding output driver in a hi-impedance mode. A ' 0 ' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3 which is input only and GP2 which may be controlled by the option register, see Figure 45.

Note: A read of the ports reads the pins, not the output data latches. That is, if an output driver on a pin is enabled and driven high. but the external system is holding it low, a read of the port will indicate that the pin is low.

5.3 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-1. All port pins, except GP3 which is input only, may be used for both input and output operations. For input operations these ports are nonlatching. Any input must be present until read by an input instruction (e.g., MOVF GPIO, w). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (=0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

FIGURE 5-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

The TRIS registers are "write-only" and are set (output drivers disabled) upon RESET.

TABLE 5-1: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRIS	I/O control registers								--11 1111	--11 1111
N/A	OPTION	$\overline{\text { GPWU }}$	GPPU	TOCS	TOSE	PSA	PS2	PS1	PSO	11111111	11111111
03H	STATUS	GPWUF	-	PAO	TO	PD	z	DC	c	0001 1xxx	q00q quux ${ }^{(1)}$
06h	GPIO	-	-	GP5	GP4	GP3	GP2	GP1	GP0	--xx xxxx	--uu uxuux

Legend: Shaded cells not used by Port Registers, read as ' 0 ', 一 = unimplemented, read as ' 0 ', $\mathrm{x}=$ unknown, u $=$ unchanged, $q=$ see tables in Section 7.7 for possible values.
Note 1: If reset was due to wake-up on change, then bit $7=1$. All other resets will cause bit $7=0$.

5.4 I/O Programming Considerations

5.4.1 BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of GPIO will cause all eight bits of GPIO to be read into the CPU, bit5 to be set and the GPIO value to be written to the output latches. If another bit of GPIO is used as a bidirectional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.
Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., BCF, BSF, etc.) on an I/ O port.
A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

; Initial GPIO Settings
; GPIO<5:3> Inputs
; GPIO<2:0> Outputs

			GPIO latch	GPIO pins
BCF	GPIO,	5	;--01 -ppp	--11 pppp
BCF	GPIO,	4	;--10 -ppp	--11 pppp
MOVLW	007h		;	
TRIS	GPIO		;--10 -ppp	--11 pppp

;
; Note that the user may have expected the pin
; values to be --00 pppp. The 2nd BCF caused
;GP5 to be latched as the pin value (High).

5.4.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this l/O port.

FIGURE 5-2: SUCCESSIVE I/O OPERATION

6.0 TIMERO MODULE AND TMRO REGISTER

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.
Timer mode is selected by clearing the TOCS bit (OPTION $<5>$). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the TOCS bit (OPTION $<5>$). In this mode, Timer0 will increment either on every rising or falling edge of pin TOCKI. The TOSE bit (OPTION<4>) determines the source edge. Clearing the TOSE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.1.

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit PSA (OPTION $<3>$). Clearing the PSA bit will assign the prescaler to Timero. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of $1: 2$, $1: 4, \ldots, 1: 256$ are selectable. Section 6.2 details the operation of the prescaler.
A summary of registers associated with the Timero module is found in Table 6-1.

FIGURE 6-1: TIMERO BLOCK DIAGRAM

Note 1: Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register. 2: The prescaler is shared with the Watchdog Timer (Figure 6-5).

FIGURE 6-2: TIMERO TIMING: INTERNAL CLOCK/NO PRESCALE

FIGURE 6-3: TIMERO TIMING: INTERNAL CLOCK/PRESCALE 1:2

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMERO

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
01h	TMR0	Timer0-8-bit real-time clock/counter								xxxx xxxx	uuuu uuau
N/A	OPTION	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	11111111	11111111
N/A	TRIS	-	-	GP5	GP4	GP3	GP2	GP1	GPO	--11 1111	--11 1111

Legend: Shaded cells not used by Timer0, - = unimplemented, $x=$ unknown, $u=u n c h a n g e d$,

6.1 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2TOSC (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4TOSC (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMERO INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timero module is actually incremented. Figure $6-4$ shows the delay from the external clock edge to the timer incrementing.

6.1.3 OPTION REGISTER EFFECT ON GP2 TRIS

If the option register is set to read TIMER0 from the pin, the port is forced to an input regardless of the TRIS register setting.

FIGURE 6-4: TIMER0 TIMING WITH EXTERNAL CLOCK

Note 1: Delay from clock input change to Timer0 increment is 3 Tosc to 7Tosc. (Duration of $\mathrm{Q}=\mathrm{Tosc}$).
Therefore, the error in measuring the interval between two edges on Timer0 input $= \pm 4$ Tosc max.
2: External clock if no prescaler selected, Prescaler output otherwise.
3: The arrows indicate the points in time where sampling occurs.

6.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (WDT), respectively (Section 7.6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.
The PSA and PS2:PSO bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.
When assigned to the Timer0 module, all instructions writing to the TMRO register (e.g., CLRF 1, MOVWF 1 , BSF $1, x$, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a RESET, the prescaler contains all '0's.

6.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 6-1: CHANGING PRESCALER (TIMERO \rightarrow WDT)

1.CLRWDT	iClear WDT
2.CLRF TMRO	iClear TMR0 \& Prescaler
3.MOVLW '00xx1111'b	iThese 3 lines (5, 6, 7)
4.OPTION	; are required only if
	; desired
5. CLRWDT	;PS<2:0> are 000 or 001
6.MOVLW 'O0xxlxxx'b	; Set Postscaler to
7.OPTION	; desired WDT rate

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 6-2: CHANGING PRESCALER (WDT \rightarrow TIMERO)
CLRWDT
MOVLW 'xxxx0xxx'
OPTION

FIGURE 6-5: BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER

Note:TOCS, TOSE, PSA, PS2:PS0 are bits in the OPTION register.

7.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC12C5XX family of microcontrollers has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features are:

- Oscillator selection
- Reset
- Power-On Reset (POR)
- Device Reset Timer (DRT)
- Wake-up from SLEEP on pin change
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit Serial Programming

The PIC12C5XX has a Watchdog Timer which can be shut off only through configuration bit WDTE. It runs off of its own RC oscillator for added reliability. If using XT or LP selectable oscillator options, there is always an 18 ms (nominal) delay provided by the Device Reset Timer (DRT), intended to keep the chip in reset until the crystal oscillator is stable. If using INTRC or EXTRC there is an 18 ms delay only on VDD power-up. With this timer on-chip, most applications need no external reset circuitry.
The SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through a change on input pins or through a Watchdog Timer time-out. Several oscillator options are also made available to allow the part to fit the application, including an internal 4 MHz oscillator. The EXTRC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

7.1 Configuration Bits

The PIC12C5XX configuration word consists of 12 bits. Configuration bits can be programmed to select various device configurations. Two bits are for the selection of the oscillator type, one bit is the Watchdog Timer enable bit, and one bit is the $\overline{M C L R}$ enable bit.

FIGURE 7-1: CONFIGURATION WORD FOR PIC12C5XX

7.2 Oscillator Configurations

7.2.1 OSCILLATOR TYPES

The PIC12C5XX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- LP: Low Power Crystal
- XT: Crystal/Resonator
- INTRC: Internal 4 MHz Oscillator
- EXTRC: External Resistor/Capacitor

7.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT or LP modes, a crystal or ceramic resonator is connected to the GP5/OSC1/CLKIN and GP4/OSC2 pins to establish oscillation (Figure 7-2). The PIC12C5XX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT or LP modes, the device can have an external clock source drive the GP5/ OSC1/CLKIN pin (Figure 7-3).

FIGURE 7-2: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (XT OR LP OSC
CONFIGURATION)

Note 1: See Capacitor Selection tables for recommended values of C1 and C2.
2: A series resistor (RS) may be required for AT strip cut crystals.
3: RF approximate value $=10 \mathrm{M} \Omega$.

FIGURE 7-3: EXTERNAL CLOCK INPUT OPERATION (XT OR LP OSC CONFIGURATION)

TABLE 7-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS

 - PIC12C5XX| Osc
 Type | Resonator
 Freq | Cap. Range
 C1 | Cap. Range
 C2 |
| :---: | :---: | :---: | :---: |
| XT | 4.0 MHz | 30 pF | 30 pF |

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 7-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

- PIC12C5XX

Osc Type	Resonator Freq	Cap.Range C1	Cap. Range C2
LP	$32 \mathrm{kHz}^{(1)}$	15 pF	15 pF
XT	200 kHz	$47-68 \mathrm{pF}$	$47-68 \mathrm{pF}$
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF

Note 1: For VDD $>4.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2 \approx 30 \mathrm{pF}$ is recommended.
These values are for design guidance only. Rs may be required to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

7.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.
Figure 7-4 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The $4.7 \mathrm{k} \Omega$ resistor provides the negative feedback for stability. The $10 \mathrm{k} \Omega$ potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.
FIGURE 7-4: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 7-5 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180degree phase shift in a series resonant oscillator circuit. The 330Ω resistors provide the negative feedback to bias the inverters in their linear region.
FIGURE 7-5: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

7.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used.
Figure 7-6 shows how the R / C combination is connected to the PIC12C5XX. For Rext values below $2.2 \mathrm{k} \Omega$, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g., $1 \mathrm{M} \Omega$) the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between $3 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$
Although the oscillator will operate with no external capacitor (Cext $=0 \mathrm{pF}$), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.
The Electrical Specifications sections show RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).
Also, see the Electrical Specifications sections for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.
FIGURE 7-6: EXTERNAL RC OSCILLATOR MODE

7.2.5 INTERNAL 4 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD $=5 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$, see "Electrical Specifications" section for information on variation over voltage and temperature..
In addition, a calibration instruction is programmed into the top of memory which contains the calibration value for the internal RC oscillator. This location is never code protected regardless of the code protect settings. This value is programmed as a MOVLW XX instruction where XX is the calibration value, and is placed at the reset vector. This will load the W register with the calibration value upon reset and the PC will then roll over to the users program at address 0×000. The user then has the option of writing the value to the OSCCAL Register (05h) or ignoring it.
OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency. .

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be read prior to erasing the part. so it can be reprogrammed correctly later.
For the PIC12C508A and PIC12C509A, bits <7:2>, CAL5-CAL0 are used for calibration. Adjusting CAL50 from 000000 to 111111 yields a higher clock speed. Note that bits 1 and 0 of OSCCAL are unimplemented and should be written as 0 when modifying OSCCAL for compatibility with future devices.
For the PIC12C508 and PIC12C509, the lower 4 bits of the register are used. Writing a larger value in this location yields a higher clock speed.

7.3 RESET

The device differentiates between various kinds of reset:
a) Power on reset (POR)
b) $\overline{\mathrm{MCLR}}$ reset during normal operation
c) $\overline{M C L R}$ reset during SLEEP
d) WDT time-out reset during normal operation
e) WDT time-out reset during SLEEP
f) Wake-up from SLEEP on pin change

Some registers are not reset in any way; they are unknown on POR and unchanged in any other reset. Most other registers are reset to "reset state" on poweron reset (POR), $\overline{M C L R}$, WDT or wake-up on pin change reset during normal operation. They are not affected by a WDT reset during SLEEP or $\overline{M C L R}$ reset during SLEEP, since these resets are viewed as resumption of normal operation. The exceptions to this
are $\overline{T O}, \overline{P D}$, and GPWUF bits. They are set or cleared differently in different reset situations. These bits are used in software to determine the nature of reset. See Table 7-3 for a full description of reset states of all registers.

TABLE 7-3: RESET CONDITIONS FOR REGISTERS

Register	Address	Power-on Reset	MCLR Reset WDT time-out Wake-up on Pin Change
W (PIC12C508/509)	-	qqqq $\mathrm{xxxx}^{(1)}$	qqqq uuuu ${ }^{(1)}$
W (PIC12C508A/509A)	-	qqqq $q q \times x{ }^{(1)}$	qqqq qquu (1)
INDF	00h	xxxx xxxx	uuuu uxuu
TMR0	01h	xxxx xxxx	uaua uxuu
PC	02h	11111111	11111111
STATUS	03h	0001 1xxx	q00q quau ${ }^{(2,3)}$
FSR (12C508/12C508A)	04h	111x xxxx	111u uxuu
FSR (12C509/12C509A)	04h	110x xxxx	11ua uxuu
OSCCAL(12C508/509)	05h	0111 ----	uuuu ----
OSCCAL(12C508A/509A)	05h	1000 00--	uuuu uu--
GPIO	06h	--xx xxxx	--uu uxuu
OPTION	-	11111111	11111111
TRIS	-	--11 1111	--11 1111

Legend: $u=$ unchanged, $x=$ unknown, - = unimplemented bit, read as ' 0 ', $q=$ value depends on condition.
Note 1: Bits $<7: 2>$ of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.
Note 2: See Table 7-7 for reset value for specific conditions
Note 3: If reset was due to wake-up on pin change, then bit $7=1$. All other resets will cause bit $7=0$.
TABLE 7-4: RESET CONDITION FOR SPECIAL REGISTERS

	STATUS Addr: 03h	PCL Addr: 02h
Power on reset	0001 1xxx	11111111
$\overline{\text { MCLR reset during normal operation }}$	000 u uuuu	11111111
$\overline{\text { MCLR reset during SLEEP }}$	0001 0uuu	11111111
WDT reset during SLEEP	0000 0uuu	11111111
WDT reset normal operation	0000 uuuu	11111111
Wake-up from SLEEP on pin change	1001 0uuu	11111111

Legend: $u=$ unchanged, $x=$ unknown, - = unimplemented bit, read as ' 0 '.

7.3.1 $\overline{M C L R ~ E N A B L E ~}$

This configuration bit when unprogrammed (left in the ' 1 ' state) enables the external $\overline{M C L R}$ function. When programmed, the $\overline{M C L R}$ function is tied to the internal VDD, and the pin is assigned to be a GPIO. See Figure 7-7. When pin GP3/MCLR/VPP is configured as $\overline{M C L R}$, the internal pull-up is always on.

FIGURE 7-7: $\overline{M C L R ~ S E L E C T ~}$

7.4 Power-On Reset (POR)

The PIC12C5XX family incorporates on-chip PowerOn Reset (POR) circuitry which provides an internal chip reset for most power-up situations.
The on-chip POR circuit holds the chip in reset until VDD has reached a high enough level for proper operation. To take advantage of the internal POR, program the GP3/MCLR $/ \mathrm{VPP}$ pin as $\overline{\mathrm{MCLR}}$ and tie thru a resistor to VDD or program the pin as GP3. An internal weak pull-up resistor is implemented using a transistor. Refer to Table 10-1 for the pull-up resistor ranges. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.
When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating parameters are met.
A simplified block diagram of the on-chip Power-On Reset circuit is shown in Figure 7-8.

The Power-On Reset circuit and the Device Reset Timer (Section 7.5) circuit are closely related. On power-up, the reset latch is set and the DRT is reset. The DRT timer begins counting once it detects $\overline{M C L R}$ to be high. After the time-out period, which is typically 18 ms , it will reset the reset latch and thus end the onchip reset signal.
A power-up example where $\overline{M C L R}$ is held low is shown in Figure 7-9. VDD is allowed to rise and stabilize before bringing $\overline{\mathrm{MCLR}}$ high. The chip will actually come out of reset TDRT msec after $\overline{M C L R}$ goes high.
In Figure 7-10, the on-chip Power-On Reset feature is being used ($\overline{M C L R}$ and VDD are tied together or the pin is programmed to be GP3.). The VDD is stable before the start-up timer times out and there is no problem in getting a proper reset. However, Figure 711 depicts a problem situation where VDD rises too slowly. The time between when the DRT senses that $\overline{M C L R}$ is high and when $\overline{M C L R}$ (and VDD) actually reach their full value, is too long. In this situation, when the start-up timer times out, VDD has not reached the VDD (min) value and the chip is, therefore, not guaranteed to function correctly. For such situations, we recommend that external RC circuits be used to achieve longer POR delay times (Figure 7-10).

Note: When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be meet to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information refer to Application Notes "Power-Up Considerations" - AN522 and "Power-up Trouble Shooting" - AN607.

FIGURE 7-8: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

FIGURE 7-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR PULLED LOW)

FIGURE 7-10: TIME-OUT SEQUENCE ON POWER-UP (MCLRTIED TO Vdd): FAST Vdd RISE TIME

FIGURE 7-11: TIME-OUT SEQUENCE ON POWER-UP (MCLRTIED TO VdD): SLOW Vdd RISE TIME

When VDD rises slowly, the TDRT time-out expires long before VDD has reached its final value. In this example, the chip will reset properly if, and only if, $\mathrm{V} 1 \geq \mathrm{VDD}$ min.

7.5 Device Reset Timer (DRT)

In the PIC12C5XX, DRT runs from RESET and varies based on oscillator selection (see Table 7-5.)
The DRT operates on an internal RC oscillator. The processor is kept in RESET as long as the DRT is active. The DRT delay allows VDD to rise above VDD min., and for the oscillator to stabilize.
Oscillator circuits based on crystals or ceramic resonators require a certain time after power-up to establish a stable oscillation. The on-chip DRT keeps the device in a RESET condition for approximately 18 ms after $\overline{\mathrm{MCLR}}$ has reached a logic high ($\mathrm{V}_{\mathrm{H}} \overline{\mathrm{MCLR}}$) level. Thus, programming GP3/MCLR/VPP as $\overline{M C L R}$ and using an external RC network connected to the $\overline{M C L R}$ input is not required in most cases, allowing for savings in cost-sensitive and/or space restricted applications, as well as allowing the use of the GP3/ $\overline{M C L R} / V P P$ pin as a general purpose input.
The Device Reset time delay will vary from chip to chip due to VDD, temperature, and process variation. See AC parameters for details.
The DRT will also be triggered upon a Watchdog Timer time-out. This is particularly important for applications using the WDT to wake from SLEEP mode automatically.

7.6 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the external RC oscillator of the GP5/OSC1/CLKIN pin and the internal 4 MHz oscillator. That means that the WDT will run even if the main processor clock has been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT reset or wake-up reset generates a device RESET.
The $\overline{T O}$ bit (STATUS<4>) will be cleared upon a Watchdog Timer reset.
The WDT can be permanently disabled by programming the configuration bit WDTE as a ' 0 ' (Section 7.1). Refer to the PIC12C5XX Programming Specifications to determine how to access the configuration word.
TABLE 7-5: DRT (DEVICE RESET TIMER PERIOD)

Oscillator Configuration	POR Reset	Subsequent Resets
 ExtRC	18 ms (typical)	$300 \mu \mathrm{~s}$ (typical)
XT \& LP	18 ms (typical)	18 ms (typical)

7.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms , (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, a time-out period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-topart process variations (see DC specs).
Under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

7.6.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the postscaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET.

The SLEEP instruction resets the WDT and the postscaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT wake-up reset.

FIGURE 7-12: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 7-6: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Polue on Peset	Value on All Other Resets
N/A	OPTION	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	11111111	11111111

Legend: Shaded boxes = Not used by Watchdog Timer, - = unimplemented, read as ' O^{\prime}, u = unchanged

7.7 Time-Out Sequence, Power Down, and Wake-up from SLEEP Status Bits ($\overline{\mathrm{TO}} / \overline{\mathrm{PD}} / \mathrm{GPWUF}$)

The $\overline{T O}, \overline{P D}$, and GPWUF bits in the STATUS register can be tested to determine if a RESET condition has been caused by a power-up condition, a $\overline{M C L R}$ or Watchdog Timer (WDT) reset.

TABLE 7-7: $\overline{\text { TO }} / \overline{\text { PD }} /$ GPWUF STATUS AFTER RESET

GPWUF	$\overline{\text { TO }}$	$\overline{\mathbf{P D}}$	RESET caused by
0	0	0	WDT wake-up from SLEEP
0	0	u	WDT time-out (not from SLEEP)
0	1	0	MCLR wake-up from SLEEP
0	1	1	Power-up
0	u	u	$\overline{\text { MCLR not during SLEEP }}$
1	1	0	Wake-up from SLEEP on pin change

Legend: Legend: u=unchanged
Note 1: The $\overline{T O}, \overline{\mathrm{PD}}$, and GPWUF bits maintain their status (u) until a reset occurs. A low-pulse on the $\overline{M C L R}$ input does not change the $\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$, and GPWUF status bits.

7.8 Reset on Brown-Out

A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC12C5XX devices when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 7-13 and Figure 7-14.

FIGURE 7-13: BROWN-OUT PROTECTION CIRCUIT 1

This circuit will activate reset when VDD goes below $\mathrm{Vz}+$ 0.7 V (where $\mathrm{Vz}=$ Zener voltage).
*Refer to Figure 7-7 and Table 10-1 for internal weak pullup on MCLR.

FIGURE 7-14: BROWN-OUT PROTECTION CIRCUIT 2

This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$
\mathrm{VDD} \cdot \frac{\mathrm{R} 1}{\mathrm{R} 1+\mathrm{R} 2}=0.7 \mathrm{~V}
$$

*Refer to Figure 7-7 and Table 10-1 for internal weak pull-up on MCLR.

$7.9 \quad$ Power-Down Mode (SLEEP)

A device may be powered down (SLEEP) and later powered up (Wake-up from SLEEP).

7.9.1 SLEEP

The Power-Down mode is entered by executing a SLEEP instruction.
If enabled, the Watchdog Timer will be cleared but keeps running, the $\overline{\mathrm{TO}}$ bit (STATUS $<4>$) is set, the $\overline{\mathrm{PD}}$ bit (STATUS<3>) is cleared and the oscillator driver is turned off. The I/O ports maintain the status they had before the sleep instruction was executed (driving high, driving low, or hi-impedance).
It should be noted that a RESET generated by a WDT time-out does not drive the MCLR pin low.
For lowest current consumption while powered down, the TOCKI input should be at VDD or Vss and the GP3/ $\overline{M C L R} /$ Vpp pin must be at a logic high level (VIHMC) if $\overline{M C L R}$ is enabled.

7.9.2 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

1. An external reset input on GP3/MCLR/VPP pin, when configured as $\overline{\mathrm{MCLR}}$.
2. A Watchdog Timer time-out reset (if WDT was enabled).
3. A change on input pin GP0, GP1, or GP3/ $\overline{M C L R} / V P P$ when wake-up on change is enabled.
These events cause a device reset. The $\overline{T O}, \overline{P D}$, and GPWUF bits can be used to determine the cause of device reset. The TO bit is cleared if a WDT time-out occurred (and caused wake-up). The $\overline{\mathrm{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The GPWUF bit indicates a change in state while in SLEEP at pins GP0, GP1, or GP3 (since the last time there was a file or bit operation on GP port).
Caution: Right before entering SLEEP, read the input pins. When in SLEEP, wake up occurs when the values at the pins change from the state they were in at the last reading. If a wake-up on change occurs and the pins are not read before reentering SLEEP, a wake up will occur immediately even if no pins change while in SLEEP mode.
The WDT is cleared when the device wakes from sleep, regardless of the wake-up source.

7.10 Program Verification/Code Protection

If the code protection bit has not been programmed, the on-chip program memory can be read out for verification purposes.

The first 64 locations and the last location can be read regardless of the code protection bit setting.

7.11 ID Locations

Four memory locations are designated as ID locations where the user can store checksum or other codeidentification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify.
Use only the lower 4 bits of the ID locations and always program the upper 8 bits as '0's.

7.12 In-Circuit Serial Programming

The PIC12C5XX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.
The device is placed into a program/verify mode by holding the GP1 and GP0 pins low while raising the $\overline{M C L R}$ (VPP) pin from VIL to VIHH (see programming specification). GP1 becomes the programming clock and GP0 becomes the programming data. Both GP1 and GP0 are Schmitt Trigger inputs in this mode.

After reset, a 6-bit command is then supplied to the device. Depending on the command, 14 -bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC12C5XX Programming Specifications.

A typical in-circuit serial programming connection is shown in Figure 7-15.

FIGURE 7-15: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

8.0 INSTRUCTION SET SUMMARY

Each PIC12C5XX instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type, and one or more operands which further specify the operation of the instruction. The PIC12C5XX instruction set summary in Table 8-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 8-1 shows the opcode field descriptions.
For byte-oriented instructions, ' f ' represents a file register designator and ' d ' represents a destination designator. The file register designator is used to specify which one of the 32 file registers is to be used by the instruction.
The destination designator specifies where the result of the operation is to be placed. If ' d ' is ' 0 ', the result is placed in the W register. If ' d ' is ' 1 ', the result is placed in the file register specified in the instruction.
For bit-oriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.
For literal and control operations, ' k ' represents an 8 or 9-bit constant or literal value.

TABLE 8-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (=0 or 1) The assembler will generate code with $x=0$. It is the recommended form of use for compatibility with all Microchip software tools.
a	```Destination select; d=0 (store result in W) d=1 (store result in file register 'f') Default is d=1```
label	Label name
TOS	Top of Stack
PC	Program Counter
WDT	Watchdog Timer Counter
\bar{T}	Time-Out bit
PD	Power-Down bit
dest	Destination, either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
ϵ	In the set of
italics	User defined term (font is courier)

All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz , the normal instruction execution time is $1 \mu \mathrm{~s}$. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is $2 \mu \mathrm{~s}$.
Figure 8-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh
where ' h ' signifies a hexadecimal digit.

FIGURE 8-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations

$d=0$ for destination W
$\mathrm{d}=1$ for destination f
$\mathrm{f}=5$-bit file register address
Bit-oriented file register operations

b $=3$-bit bit address
$f=5$-bit file register address
Literal and control operations (except GOTO)

11	$8 \quad 7$	0
OPCODE	k (iteral)	

$k=8$-bit immediate value
Literal and control operations - Gото instruction

$\mathrm{k}=9$-bit immediate value

TABLE 8-2: INSTRUCTION SET SUMMARY

Mnemonic, Operands		Description	Cycles	12-Bit Opcode			Status Affected	Notes	
		MSb			LSb				
ADDWF	f,d		Add W and f	1	0001	11df	ffff	C,DC,Z	1,2,4
ANDWF	f,d	AND W with f	1	0001	01df	ffff	Z	2,4	
CLRF	f	Clear f	1	0000	011f	ffff	Z	4	
CLRW	-	Clear W	1	0000	0100	0000	Z		
COMF	f, d	Complement f	1	0010	01df	ffff	Z		
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2,4	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	0010	11df	ffff	None	2,4	
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2,4	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	0011	11df	ffff	None	2,4	
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2,4	
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2,4	
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1,4	
NOP	-	No Operation	1	0000	0000	0000	None		
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	C	2,4	
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	C	2,4	
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1,2,4	
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2,4	
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2,4	
BIT-ORIENTED FILE REGISTER OPERATIONS									
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2,4	
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2,4	
BTFSC	f, b	Bit Test f , Skip if Clear	1 (2)	0110	bbbf	ffff	None		
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	0111	bbbf	ffff	None		
LITERAL AND CONTROL OPERATIONS									
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	1001	kkkk	kkkk	None	1	
CLRWDT	k	Clear Watchdog Timer	,	0000	0000	0100	TO, $\overline{P D}$		
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None		
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z		
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None		
OPTION	-	Load OPTION register	1	0000	0000	0010	None		
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None		
SLEEP	-	Go into standby mode	1	0000	0000	0011	$\overline{T O}, \overline{\mathrm{PD}}$		
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3	
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z		

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO. (Section 4.6)
2: When an I/O register is modified as a function of itself (e.g. MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is ' 1 ' for a pin configured as input and is driven low by an external device, the data will be written back with a ' 0 '.
3: The instruction TRIS f, where $f=6$ causes the contents of the W register to be written to the tristate latches of GPIO. A ' 1 ' forces the pin to a hi-impedance state and disables the output buffers.
4: If this instruction is executed on the TMRO register (and, where applicable, $d=1$), the prescaler will be cleared (if assigned to TMR0).

ADDWF	Add W and f		
Syntax:	[label] ADDWF f,d		
Operands:	$\begin{aligned} & 0 \leq f \leq 31 \\ & d \in[0,1] \end{aligned}$		
Operation:	$(\mathrm{W})+$ (f) \rightarrow (dest)		
Status Affected:	C, DC, Z		
Encoding:	0001	11df	ffff
Description:	Add the contents of the W register and register ' f '. If ' d ' is 0 the result is stored in the W register. If ' d ' is ' 1 ' the result is stored back in register ' f '.		
Words:	1		
Cycles:	1		
Example:	ADDWF FSR, 0		
Before Instruction			
$\mathrm{W}=$	0×17		
FSR =	0xC2		
After Instruction			
$\mathrm{W}=$	0xD9		
FSR =	0xC2		
ANDLW	And literal with W		
Syntax:	[label] ANDLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	(W).AND. (k) \rightarrow (W)		
Status Affected:	Z		
Encoding:	1110	kkkk	k.kkk
Description:	The contents of the W register are AND'ed with the eight-bit literal ' k '. The result is placed in the W register.		
Words:	1		
Cycles:	1		
Example:	ANDLW $0 \times 5 \mathrm{~F}$		
Before Instruction			
W =			
After Instruc $w=$	ion 0×03		

ANDWF	AND W with f		
Syntax:	[label] ANDWF f,d		
Operands:	$\begin{aligned} & 0 \leq f \leq 31 \\ & d \in[0,1] \end{aligned}$		
Operation:	(W).AND. (f) \rightarrow (dest)		
Status Affected:	Z		
Encoding:	0001	01df	ffff
Description:	The contents of the W register are AND'ed with register ' f '. If ' d ' is 0 the result is stored in the W register. If ' d ' is ' 1 ' the result is stored back in register ' f '.		
Words:	1		
Cycles:	1		
Example:	ANDWF	FSR,	1
Before Instruction			
$\mathrm{W}=0 \times 17$			
FSR $=0 \times \mathrm{C} 2$			
After Instruction			
$\mathrm{W}=0 \times 17$			
FSR =			

BCF	Bit Clear f		
Syntax:	[label] BCF f,b		
Operands:	$\begin{aligned} & 0 \leq f \leq 31 \\ & 0 \leq b \leq 7 \end{aligned}$		
Operation:	$0 \rightarrow(f)$		
Status Affected	None		
Encoding:	0100	b.bbf	ffff
Description:	Bit 'b' in register 'f' is cleared.		
Words:	1		
Cycles:	1		
Example:	BCF	LIAG_P	,

Before Instruction
FLAG_REG $=0 \times C 7$
After Instruction
FLAG_REG $=0 \times 47$

Before Instruction $\mathrm{PC}=$ address (HERE)

After Instruction

If $\mathrm{FLAG}<1>=0$,
$\mathrm{PC} \quad=$ address (FALSE);
if $\mathrm{FLAG}<1>=1$,
PC $\quad=$ address (TRUE)

CALL	Subroutine Call		
Syntax:	[label] CALL k		
Operands:	$0 \leq k \leq 255$		
Operation:	$\begin{aligned} & \text { (PC) + } 1 \rightarrow \text { Top of Stack; } \\ & \mathrm{k} \rightarrow \mathrm{PC}<7: 0> \\ & (\mathrm{STATUS}<6: 5>) \rightarrow \mathrm{PC}<10: 9> \\ & 0 \rightarrow \mathrm{PC}<8> \end{aligned}$		
Status Affected: Encoding:	None		
	1001	kkkk	kkkk
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS $<6: 5>, \mathrm{PC}<8>$ is cleared. CALL is a two cycle instruction.		
Words:	1		
Cycles:	2		
Example:	HERE	CALI	THERE
Before Instruction			
After Instruc $\begin{aligned} & \mathrm{PC}= \\ & \mathrm{TOS}= \end{aligned}$	address address	(THERE)	
CLRF	Clear f		
Syntax:	[label] CLRF f		
Operands:	$0 \leq f \leq 31$		
Operation:	$\begin{aligned} & 00 \mathrm{~h} \rightarrow(\mathrm{f}) ; \\ & 1 \rightarrow \mathrm{Z} \end{aligned}$		
Status Affected: Z			
Encoding:	0000	011 f	ffff
Description:	The contents of register ' f ' are cleared and the Z bit is set.		
Words:	1		
Cycles:	1		
Example:	CLRE FLAG_REG		
Before Instruction$\text { FLAG_REG }=0 \times 5 \mathrm{~A}$			

CLRW	Clear W			
Syntax:	[label] CLRW			
Operands:	None			
Operation:	$\begin{aligned} & 00 \mathrm{~h} \rightarrow(\mathrm{~W}) ; \\ & 1 \rightarrow \mathrm{Z} \end{aligned}$			
Status Affected: \mathbf{Z}				
Encoding:	0000	0100	0000	
Description:	The W register is cleared. Zero bit (Z) is set.			
Words:	1			
Cycles:	1			
Example:	CLRW			
Before Instruction				
W =	$0 \times 5 \mathrm{~A}$			
After Instruction				
$W=0 \times 00$$Z=1$				
CLRWDT	Clear Watchdog Timer			
Syntax:	[label] CLRWDT			
Operands:	None			
Operation:	$\begin{aligned} & 00 \mathrm{~h} \rightarrow \text { WDT; } \\ & 0 \rightarrow \text { WDT prescaler (if assigned); } \\ & 1 \rightarrow \overline{\mathrm{TO} ;} \\ & 1 \rightarrow \overline{\mathrm{PD}} \end{aligned}$			
Status Affected: $\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$				
Encoding:	0000	0000	0100	
Description:	The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits $\overline{\mathrm{TO}}$ and $\overline{\mathrm{PD}}$ are set.			
Words:	1			
Cycles:	1			
Example:	CLRWD			
Before Instruction WDT counter = ?				
After Instruction				
WDT counter = 0x00				
WDT prescale $=0$				
$\begin{array}{ll}\overline{\mathrm{TO}} & =1 \\ \overline{\mathrm{PD}} & =1\end{array}$				

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 31 \\ & d \in[0,1] \end{aligned}$
Operation:	(f) $-1 \rightarrow$ (dest)
Status Affected:	Z
Encoding:	0000 11df ${ }^{\text {finff }}$
Description:	Decrement register ' f '. If ' d ' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register ' f '
Words:	1
Cycles:	1
Example:	DECF CNT, 1

Before Instruction	
CNT	$=$
Z	$=0 \times 01$
Z	$=0$

After Instruction		
CNT	$=0 \times 00$	
Z	$=$	1

DECFSZ	Decrement \boldsymbol{f}, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 31 \\ & d \in[0,1] \end{aligned}$
Operation:	(f) $-1 \rightarrow \mathrm{~d}$; skip if result $=0$
Status Affected:	None
Encoding:	
Description:	The contents of register 'f' are decremented. If ' d ' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register ' f '.
	If the result is 0 , the next instruction, which is already fetched, is discarded and an NOP is executed instead making it a two cycle instruction.
Words:	1
Cycles:	1(2)
Example:	HERE $\begin{array}{ll}\text { DECFSZ } \\ \text { GOTO }\end{array} \quad \begin{aligned} & \text { CNT, } 1 \\ & \text { LOOD }\end{aligned}$
Continue •	
-	
Before Instruction	
PC	$=$ address (HERE)
After Instruction	
CNT	$=$ CNT-1;
if CNT	$=0,$
PC	$=$ address (CONTINUE) ;
if CNT	$\begin{array}{ll} \neq & 0, \\ = & \text { address (HERE }+1) \end{array}$
PC	

GOTO	Unconditional Branch
Syntax:	[label] GOTO k
Operands:	$0 \leq k \leq 511$
Operation:	$\begin{aligned} & \mathrm{k} \rightarrow \mathrm{PC}<8: 0> \\ & \text { STATUS }<6: 5>\rightarrow \mathrm{PC}<10: 9> \end{aligned}$
Status Affected:	None
Encoding:	
Description:	GOTO is an unconditional branch. The 9 -bit immediate value is loaded into PC bits $\langle 8: 0$. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two cycle instruction.
Words:	1
Cycles:	2
Example:	GOTO THERE

After Instruction

$$
\mathrm{PC}=\text { address (THERE) }
$$

IORLW	Inclusive OR literal with W
Syntax:	[label] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W).OR. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	1101 kkkk kkkk
Description:	The contents of the W register are OR'ed with the eight bit literal ' k '. The result is placed in the W register.
Words:	1
Cycles:	1
Example:	IORLW 0x35

Before Instruction

$$
W=0 \times 9 A
$$

After Instruction

$$
\begin{aligned}
& \mathrm{W}=0 \times B F \\
& \mathrm{Z}=0
\end{aligned}
$$

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 31 \\ & d \in[0,1] \end{aligned}$
Operation:	(W).OR. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	0001 000 df ffff
Description:	Inclusive OR the W register with register ' f '. If ' d ' is 0 the result is placed in the W register. If ' d ' is 1 the result is placed back in register ' f '.
Words:	1
Cycles:	1
Example:	IORWF RESULT, 0

Before Instruction

```
RESULT = 0\times13
W = 0x91
```

After Instruction

| RESULT | $=0 \times 13$ |
| :--- | :--- | :--- |
| W | $=0 \times 93$ |
| Z | $=0$ |

MOVF	Move \dagger		
Syntax:	[label] MOVF f,d		
Operands:	$\begin{aligned} & 0 \leq f \leq 31 \\ & d \in[0,1] \end{aligned}$		
Operation:	(f) \rightarrow (dest)		
Status Affected:	Z		
Encoding:	0010	00df	ffff
Description:	The contents of register ' f ' is moved to destination ' d '. If ' d ' is 0 , destination is the W register. If ' d ' is 1 , the destination is file register ' f '. ' d ' is 1 is useful to test a file register since status flag Z is affected.		
Words:	1		
Cycles:	1		
Example:	MOVF	FSR,	0
After Instruction			
$\mathrm{W}=$	value in FSR register		
MOVLW	Move Literal to W		
Syntax:	[label] MOVLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	$\mathrm{k} \rightarrow$ (W)		
Status Affected:	None		
Encoding:	1100	kkkk	kkkk
Description:	The eight bit literal ' k ' is loaded into the W register. The don't cares will assemble as 0 s .		
Words:	1		
Cycles:	1		
Example:	MOVLW	0×5 A	
After Instruction			
W =	$0 \times 5 \mathrm{~A}$		

Before Instruction
$w=0 \times 07$
After Instruction
$\mathrm{W}=\quad$ value of k 8

SLEEP	Enter SLEEP Mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{aligned} & 00 \mathrm{~h} \rightarrow \text { WDT; } \\ & 0 \rightarrow \text { WDT prescaler; } \\ & 1 \rightarrow \overline{\mathrm{TO} ;} \\ & 0 \rightarrow \overline{\mathrm{PD}} \end{aligned}$
Status Affected: $\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$, GPWUF	
Encoding:	0000 0000 0011
Description:	Time-out status bit ($\overline{\mathrm{TO}}$) is set. The power down status bit ($\overline{\mathrm{PD}}$) is cleared. GPWUF is unaffected.
	The WDT and its prescaler are cleared.
	The processor is put into SLEEP mode with the oscillator stopped. See section on SLEEP for more details.
Words:	1
Cycles:	1
Example:	SLEEP

SUBWF Subtract W from f
Syntax: [labe]] SUBWF f,d

Operands: $\quad 0 \leq f \leq 31$

$$
d \in[0,1]
$$

Operation: \quad (f) $-(W) \rightarrow$ (dest)
Status Affected: C, DC, Z
Encoding:

Description: Subtract (2's complement method) the W register from register ' f '. If ' d ' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register ' f '.
Words: $\quad 1$
Cycles: $\quad 1$
Example 1: SUBWE REG1, 1
Before Instruction

REG1	$=3$	
W	$=$	2
C	$=$	$?$

After Instruction

REG1	$=1$
W	$=2$
C	$=1$

; result is positive
Example 2:
Before Instruction
REG1 $=2$
$\mathrm{W}=2$
$\mathrm{C}=$?
After Instruction

REG1	$=0$
W	$=2$
C	$=1$

result is zero
Example 3:
Before Instruction
REG1 $=1$
$\mathrm{W}=2$
$\mathrm{C}=$?
After Instruction
REG1 $=\mathrm{FF}$
$\mathrm{W}=2$
C $\quad=0$; result is negative

XORLW	Exclusive OR literal with W		
Syntax:	[labe] XORLW		k
Operands:	$0 \leq k \leq 255$		
Operation:	(W).XOR. $\mathrm{k} \rightarrow$ (W)		
Status Affected:	Z		
Encoding:	1111	kkkk	kkkk
Description:	The contents of the W register are XOR'ed with the eight bit literal ' k '. The result is placed in the W register.		
Words:	1		
Cycles:	1		
Example:	XORLW OXAF		
Before Instruction			
W =	0xB5		
After Instruction			
$\mathrm{W}=$	$0 \times 1 \mathrm{~A}$		
XORWF	Exclusive OR W with f		
Syntax:	[label] XORWF f,d		
Operands:	$\begin{aligned} & 0 \leq f \leq 31 \\ & d \in[0,1] \end{aligned}$		
Operation:	(W). XOR. (f) \rightarrow (dest)		
Status Affected:	Z		
Encoding:	0001	10df	ffff
Description:	Exclusive OR the contents of the W register with register ' f '. If ' d ' is 0 the result is stored in the W register. If ' d ' is 1 the result is stored back in register ' f ',		
Words:	1		
Cycles:	1		
Example	XORWF REG, 1		
Before Instruction			
REG	$=0 \times A F$		
W	$=0 \times B$		
After Instruction			
REG	$=0 \times 1 \mathrm{~A}$		
W	$=0 \times B$		

PIC12C5XX

NOTES:

9.0 DEVELOPMENT SUPPORT

9.1 Development Tools

The PICmicro ${ }^{T M}$ microcontrollers are supported with a full range of hardware and software development tools:

- MPLAB ${ }^{\text {TM }}$-ICE Real-Time In-Circuit Emulator
- ICEPIC ${ }^{\text {tm }}$ Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE ${ }^{(\oplus)}$ II Universal Programmer
- PICSTART ${ }^{\circledR}$ Plus Entry-Level Prototype Programmer
- SIMICE
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB ${ }^{\text {TM }}$ SIM Software Simulator
- MPLAB-C17 (C Compiler)
- Fuzzy Logic Development System (fuzzyTECH ${ }^{\oplus}$-MP)
- KEELOQ ${ }^{\circledR}$ Evaluation Kits and Programmer

9.2 MPLAB-ICE: High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). MPLAB-ICE is supplied with the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support all new Microchip microcontrollers.
The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows ${ }^{\circledR} 3 . x$ or Windows 95 environment were chosen to best make these features available to you, the end user.
MPLAB-ICE is available in two versions. MPLAB-ICE 1000 is a basic, low-cost emulator system with simple trace capabilities. It shares processor modules with the MPLAB-ICE 2000. This is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems will operate across the entire operating speed reange of the PICmicro MCU .

9.3 ICEPIC: Low-Cost PICmicro ${ }^{\text {TM }}$ In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC12CXXX, PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 386 through Pentium ${ }^{\text {TM }}$ based machines under Windows 3.x, Windows 95, or Windows NT environment. ICEPIC features real time, nonintrusive emulation.

9.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

9.5 PICSTART Plus Entry Level Development System

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.
PICSTART Plus supports all PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923, PIC16C924 and PIC17C756 may be supported with an adapter socket. PICSTART Plus is CE compliant.

9.6 SIMICE Entry-Level Hardware Simulator

SIMICE is an entry-level hardware development system designed to operate in a PC-based environment with Microchip's simulator MPLAB ${ }^{\text {TM }}-\mathrm{SIM}$. Both SIMICE and MPLAB-SIM run under Microchip Technology's MPLAB Integrated Development Environment (IDE) software. Specifically, SIMICE provides hardware simulation for Microchip's PIC12C5XX, PIC12CE5XX, and PIC16C5X families of PICmicro ${ }^{\text {TM }} 8$-bit microcontrollers. SIMICE works in conjunction with MPLAB-SIM to provide non-real-time I/O port emulation. SIMICE enables a developer to run simulator code for driving the target system. In addition, the target system can provide input to the simulator code. This capability allows for simple and interactive debugging without having to manually generate MPLAB-SIM stimulus files. SIMICE is a valuable debugging tool for entrylevel system development.

9.7 PICDEM-1 Low-Cost PICmicro Demonstration Board

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the MPLAB-ICE emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

9.8 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the $I^{2} \mathrm{C}$ bus and separate headers for connection to an LCD module and a keypad.

9.9 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

9.10 MPLAB Integrated Development Environment Software

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
- editor
- emulator
- simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information
- Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or ' C ')
- One touch assemble (or compile) and download to PICmicro tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

9.11 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.
MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.
MPASM allows full symbolic debugging from MPLABICE, Microchip's Universal Emulator System.
MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.
MPASM provides a rich directive language to support programming of the PICmicro. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

9.12 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PICmicro series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.
MPLAB-SIM fully supports symbolic debugging using MPLAB-C17 and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

9.13 MPLAB-C17 Compiler

The MPLAB-C17 Code Development System is a complete ANSI 'C' compiler and integrated development environment for Microchip's PIC17CXXX family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.
For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

9.14 Fuzzy Logic Development System (fuzzyTECH-MP)

fuzzyTECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, fuzzyTECH-MP, Edition for implementing more complex systems.
Both versions include Microchip's fuzzyLAB ${ }^{\text {TM }}$ demonstration board for hands-on experience with fuzzy logic systems implementation.

9.15 SEEVAL $^{\circledR}$ Evaluation and Programming System

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials ${ }^{\mathrm{TM}}$ and secure serials. The Total Endurance ${ }^{\mathrm{TM}}$ Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

PIC12C5XX

9.16 KEELOQ ${ }^{\oplus}$ Evaluation and

Programming Tools

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

TABLE 9-1: DEVELOPMENT TOOLS FROM MICROCHIP

								$>$	\rangle						\rangle	\rangle
						\rangle		$>$		\rangle						
	\rangle		\rangle	\rangle			\rangle	$>$								
	$>$		\rangle	\rangle	$>$		$>$	$>$					$>$			
	\rangle	$>$	$>$		\rangle		$>$	$>$							$>$	
	\rangle	\rangle	\rangle		\rangle		\rangle	\rangle					$>$			
	$>$	\rangle	\rangle		\rangle		\rangle	$>$						$>$		
	$>$	\rangle	$>$		\rangle		$>$	$>$						$>$		
	$>$	\rangle	$>$		$>$		\rangle	$>$					$>$			
($>$	\rangle	$>$		$>$		$>$	$>$			$>$		$>$			
䂞	\rangle		\rangle		\rangle		$>$	$>$				$>$				
	$>$		$>$		$>$		$>$	$>$			$>$					
	pod	\|nus		OOL	aemyos			umea60d					deos	ou	-ued	

PIC12C5XX

NOTES:

10.0 ELECTRICAL CHARACTERISTICS - PIC12C508/PIC12C509/ PIC12LC508/PIC12LC509

Absolute Maximum Ratings \dagger
Ambient Temperature under bias $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on VDD with respect to VSS 0 to +7.5 V
Voltage on MCLR with respect to Vss. 0 to +14 V
Voltage on all other pins with respect to Vss -0.6 V to (VDD + 0.6 V)
Total Power Dissipation ${ }^{(1)}$ 700 mW
Max. Current out of Vss pin 200 mA
Max. Current into VDD pin 150 mA
Input Clamp Current, lik ($\mathrm{VI}<0$ or $\mathrm{VI}>\mathrm{VDD}$) $\pm 20 \mathrm{~mA}$
Output Clamp Current, IOK (Vo < 0 or Vo > Vdd) $\pm 20 \mathrm{~mA}$
Max. Output Current sunk by any I/O pin 25 mA
Max. Output Current sourced by any I/O pin 25 mA
Max. Output Current sourced by I/O port (GPIO) 100 mA
Max. Output Current sunk by I/O port (GPIO) 100 mA
Note 1: Power Dissipation is calculated as follows: PDIS $=\mathrm{VDD} \times\{\operatorname{IDD}-\Sigma \mathrm{lOH}\}+\sum\{(\mathrm{VDD}-\mathrm{VOH}) \times \operatorname{lOH}\}+\Sigma(\mathrm{VOL} \times \mathrm{lOL})$
${ }^{\dagger}$ NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.This is a stress rating only and functional operation of the device at those or any other conditions above thoseindicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions forextended periods may affect device reliability.

10.1 DC CHARACTERISTICS: PIC12C508/509 (Commercial, Industrial, Extended)

DC Characteristics Power Supply Pins	Standard Operating Conditions (unless otherwise specified) Operating Temperature $\quad 0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ (commercial) $-40^{\circ} \mathrm{C} \leq T A \leq+85^{\circ} \mathrm{C}$ (industrial) $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (extended)					
Characteristic	Sym	Min	Typ ${ }^{(1)}$	Max	Units	Conditions
Supply Voltage	VDD	$\begin{aligned} & \hline \hline 2.5 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \hline 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline \overline{\mathrm{V}} \\ & \mathrm{~V} \end{aligned}$	Fosc = DC to 4 MHz (Commercial/ Industrial) Fosc = DC to 4 MHz (Extended)
RAM Data Retention Voltage ${ }^{(2)}$	VDR		1.5*		V	Device in SLEEP mode
VdD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details
Vdd Rise Rate to ensure Power-on Reset	SVDD	0.05*			V/ms	See section on Power-on Reset for details
Supply Current ${ }^{(3)}$	IDD Δ IWDT	- - - - - - -	$\begin{gathered} 1.8 \\ 1.8 \\ 15 \\ \\ 19 \\ \\ 19 \\ \\ \hline \end{gathered}$	$\begin{aligned} & 2.4 \\ & 2.4 \\ & 27 \\ & 35 \\ & 35 \\ & \\ & 8 \\ & 9 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \end{aligned}$	XT and EXTRC options (Note 4) FOSC $=4 \mathrm{MHz}, \mathrm{VDD}=5.5 \mathrm{~V}$ INTRC Option Fosc $=4 \mathrm{MHz}, \mathrm{VDD}=5.5 \mathrm{~V}$ LP Option, Commercial Temperature FOSC $=32 \mathrm{kHz}$, VDD $=3.0 \mathrm{~V}$, WDT disabled LP OPTION, Industrial Temperature FOSC $=32 \mathrm{kHz}$, VDD $=3.0 \mathrm{~V}$, WDT disabled LP Option, Extended Temperature FOSC $=32 \mathrm{kHz}, \mathrm{VDD}=3.0 \mathrm{~V}$, WDT disabled- VDD $=3.0 \mathrm{~V}$, Commercial VDD $=3.0 \mathrm{~V}$, Industrial VDD $=3.0 \mathrm{~V}$, Extended
Power-Down Current ${ }^{(5)}$	IPD	—	$\begin{gathered} 0.25 \\ 0.25 \\ 2 \end{gathered}$	$\begin{gathered} 4 \\ 5 \\ 18 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \text { VDD }=3.0 \mathrm{~V} \text {, Commercial } \\ & \mathrm{VDD}=3.0 \mathrm{~V} \text {, Industrial } \\ & \text { VDD }=3.0 \mathrm{~V} \text {, Extended } \end{aligned}$

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at $25^{\circ} \mathrm{C}$. This data is for design guidance only and is not tested.
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
a) The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to $V_{\text {ss }}, T O C K I=$ VDD, $\overline{M C L R}=$ VDD; WDT enabled/disabled as specified.
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

10.2 DC CHARACTERISTICS: PIC12C508/509 (Commercial, Industrial, Extended)

DC CH	RACTERISTICS	Standard Operating Conditions (unless otherwise specified) Operating temperature $\quad 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ (commercial) $-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{2} \leq+85^{\circ} \mathrm{C} \text { (industrial) }$ $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { (extended) }$ Operating voltage VDD range as described in DC spec Section 10.1 and Section 10.2.					
Param No.	Characteristic	Sym	Min	Typ \dagger	Max	Units	Conditions
$\begin{aligned} & \text { D030 } \\ & \text { D031 } \\ & \text { D032 } \\ & \text { D033 } \end{aligned}$	Input Low Voltage I/O ports with TTL buffer with Schmitt Trigger buffer MCLR, GP2/TOCKI/AN2/INT (in EXTRC mode) OSC1 (in XT, HS and LP)	VIL	Vss Vss Vss Vss	-	$\left\|\begin{array}{c} 0.5 \mathrm{~V} \\ 0.2 \mathrm{VDD} \\ 0.2 \mathrm{VDD} \\ \\ 0.3 \mathrm{VDD} \end{array}\right\|$	$\begin{aligned} & V \\ & V \\ & V \\ & v \end{aligned}$	Note1
D040 D040A D041 D042 D042A D043	Input High Voltage I/O ports with TTL buffer with Schmitt Trigger buffer MCLR, GP2/TOCKI/AN2/INT OSC1 (XT, HS and LP) OSC1 (in EXTRC mode)	VIH	2.0 0.8 VDD 0.8 VDD 0.8 VDD 0.7 VDD 0.9 VDD	- - - - - - -	VDD VDD VDD VDD VDD VdD	$\begin{aligned} & V \\ & V \end{aligned}$	$4.5 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ For VDD $>5.5 \mathrm{~V}$ or VDD $<4.5 \mathrm{~V}$ For entire VDD range Note1
D070	GPIO weak pull-up current	IPUR	50	250	400	$\mu \mathrm{A}$	$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{VPIN}=\mathrm{V} S \mathrm{~S}$
$\begin{array}{\|l\|} \text { D060 } \\ \text { D061 } \\ \text { D063 } \end{array}$	Input Leakage Current (Notes 2, 3) I/O ports $\overline{M C L R}, ~ G P 2 / T O C K I$ OSC1	IIL	- - -	-	$\begin{gathered} \pm 1 \\ \pm 5^{(5)} \\ \pm 5 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	Vss \leq VPIN \leq VDD, Pin at hiimpedance Vss \leq VPIN \leq VDD Vss \leq VPIN \leq VDD, XT , HS and LP osc configuration
D080 D080A D083 D083A	Output Low Voltage I/O ports/CLKOUT OSC2	Vol	- - - -	- - - -	0.6 0.6 0.6 0.6	V V V V V	$\begin{aligned} & \mathrm{IOL}=8.5 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{IOL}=7.0 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{IOL}=1.6 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{IOL}=1.2 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$

\dagger Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.
2: The leakage current on the $\overline{M C L R}$ pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as coming out of the pin.
4: Extended operating range is Advance Information for this device.
5: When configured as external reset, the input leakage current is the weak pull-up current of -10mA minimum. This pull-up is weaker than the standard I/O pull-up.

\dagger Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.
2: The leakage current on the $\overline{M C L R}$ pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as coming out of the pin.
4: Extended operating range is Advance Information for this device.
5: When configured as external reset, the input leakage current is the weak pulll-up current of -10 mA minimum. This pull-up is weaker than the standard I/O pull-up.

10.3 DC CHARACTERISTICS: PIC12LC508/509 (Commercial, Industrial)

DC Characteristics Power Supply Pins		Standard Operating Conditions (unless otherwise specified) Operating Temperature $\quad 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ (commercial) $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ (industrial)				
Characteristic	Sym	Min	Typ ${ }^{(1)}$	Max	Units	Conditions
Supply Voltage	VDD	$\begin{aligned} & \hline 2.5 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \hline \hline 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \hline \text { FosC = DC to } 4 \mathrm{MHz} \text { (Commercial/ } \\ & \text { Industrial) } \\ & \text { Fosc = DC to } 4 \mathrm{MHz} \text { (Extended) } \end{aligned}$
RAM Data Retention Voltage ${ }^{(2)}$	VDR		1.5*		V	Device in SLEEP mode
VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details
Vdo Rise Rate to ensure Power-on Reset	SVDD	0.05*			V / ms	See section on Power-on Reset for details
Supply Current ${ }^{(3)}$	IDD \triangle IWDT		$\begin{aligned} & \hline 1.8 \\ & 1.8 \\ & 15 \\ & \\ & 19 \\ & \\ & 19 \\ & \\ & \hline \end{aligned}$	2.4 2.4 27 35 35 8 9 4	mA mA $\mu \mathrm{A}$	XT and EXTRC options (Note 4) Fosc $=4 \mathrm{MHz}, \mathrm{VDD}=5.5 \mathrm{~V}$ INTRC Option Fosc $=4 \mathrm{MHz}, \mathrm{VDD}=5.5 \mathrm{~V}$ LP Option, Commercial Temperature FOSC $=32 \mathrm{kHz}, \mathrm{VDD}=3.0 \mathrm{~V}$, WDT disabled LP OPTION, Industrial Temperature FOSC $=32 \mathrm{kHz}, \mathrm{VDD}=3.0 \mathrm{~V}$, WDT disabled LP Option, Extended Temperature Fosc $=32 \mathrm{kHz}, \mathrm{VDD}=3.0 \mathrm{~V}$, WDT disabled- VDD $=3.0 \mathrm{~V}$, Commercial VDD $=3.0 \mathrm{~V}$, Industrial VDD $=3.0 \mathrm{~V}$, Extended
Power-Down Current ${ }^{(5)}$	IPD	-	$\begin{gathered} 0.25 \\ 0.25 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \\ 5 \\ 18 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \text { VDD }=3.0 \mathrm{~V} \text {, Commercial } \\ & \mathrm{VDD}=3.0 \mathrm{~V} \text {, Industrial } \\ & \mathrm{VDD}=3.0 \mathrm{~V} \text {, Extended } \end{aligned}$

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at $25^{\circ} \mathrm{C}$. This data is for design guidance only and is not tested.
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
a) The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to
Vss, $T O C K I=$ VDD, $\overline{M C L R}=$ VDD; WDT enabled/disabled as specified.
b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

10.4 DC CHARACTERISTICS: PIC12LC508/509 (Commercial, Industrial)

DC CHA	ARACTERISTICS	Standard Operating Conditions (unless otherwise specified) Operating temperature $\quad 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ (commercial) $-40^{\circ} \mathrm{C} \leq T \mathrm{~T} \leq+85^{\circ} \mathrm{C} \text { (industrial) }$ Operating voltage VDD range as described in DC spec Section 10.1 and Section 10.2.					
Param No.	Characteristic	Sym	Min	Typ \dagger	Max	Units	Conditions
$\begin{aligned} & \text { D030 } \\ & \text { D031 } \\ & \text { D032 } \\ & \text { D033 } \end{aligned}$	```Input Low Voltage I/O ports with TTL buffer with Schmitt Trigger buffer MCLR, GP2/TOCKI/AN2/INT (in EXTRC mode) OSC1 (in XT, HS and LP)```	VIL	Vss Vss Vss Vss	- - - - -	$\left\|\begin{array}{c} 0.5 \mathrm{~V} \\ 0.2 \mathrm{VDD} \\ 0.2 \mathrm{VDD} \\ \\ 0.3 \mathrm{VDD} \end{array}\right\|$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$	Note1
$\begin{array}{\|l} \text { D040 } \\ \text { D040A } \\ \text { D041 } \\ \text { D042 } \\ \text { D042A } \\ \text { D043 } \end{array}$	Input High Voltage I/O ports with TTL buffer with Schmitt Trigger buffer MCLR, GP2/TOCKI/AN2/INT OSC1 (XT, HS and LP) OSC1 (in EXTRC mode)	VIH	$\begin{gathered} 2.0 \\ 0.8 \mathrm{VDD} \\ 0.8 \mathrm{VDD} \\ 0.8 \mathrm{VDD} \\ 0.7 \mathrm{VDD} \\ 0.9 \mathrm{VDD} \end{gathered}$	- - - - - - -	VDD VdD VdD VDD VDD VDD	$\begin{aligned} & V \\ & V \end{aligned}$	$4.5 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ For VDD $>5.5 \mathrm{~V}$ or $\mathrm{VDD}<4.5 \mathrm{~V}$ For entire VDD range Note1
D070	GPIO weak pull-up current	IPUR	50	250	400	$\mu \mathrm{A}$	$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{VPIN}=\mathrm{VsS}$
$\begin{aligned} & \text { D060 } \\ & \text { D061 } \\ & \text { D063 } \end{aligned}$	Input Leakage Current (Notes 2, 3) I/O ports MCLR, GP2/TOCKI OSC1	IIL	- - -	- - -	$\begin{gathered} \pm 1 \\ \pm 5^{(5)} \\ \pm 5 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	Vss \leq VPIN \leq VDD, Pin at hiimpedance Vss \leq VPIN \leq VDD Vss \leq VPIN \leq VDD, XT , HS and LP osc configuration
$\begin{aligned} & \text { D080 } \\ & \text { D080A } \\ & \text { D083 } \\ & \text { D083A } \end{aligned}$	Output Low Voltage I/O ports/CLKOUT OSC2	VoL	- - - - -	- - - - -	0.6 0.6 0.6 0.6	V V V V V	$\begin{aligned} & \mathrm{IOL}=8.5 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{IOL}=7.0 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{lOL}=1.6 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{IOL}=1.2 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$

\dagger Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.
2: The leakage current on the $\overline{M C L R}$ pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as coming out of the pin.
4: Extended operating range is Advance Information for this device.
5: When configured as external reset, the input leakage current is the weak pulll-up current of -10 mA minimum. This pull-up is weaker than the standard I/O pull-up.

DC CHARACTERISTICS		Standa Operatin Operatin Section	rd Operat ng tempera ng voltage 10.2 .	ng Core VDD	nditio $0^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ ange as	$\begin{aligned} & \text { s (unle } \\ & \leq T_{A} \leq \\ & \leq T_{A} \leq \\ & \text { descrit } \end{aligned}$	ess otherwise specified) $\leq+70^{\circ} \mathrm{C}$ (commercial) $+85^{\circ} \mathrm{C}$ (industrial) bed in DC spec Section 10.1 and
$\begin{gathered} \hline \text { Param } \\ \text { No. } \\ \hline \end{gathered}$	Characteristic	Sym	Min	$\begin{gathered} \text { Typ } \\ t \\ \hline \end{gathered}$	Max	Units	Conditions
D090	Output High VoItage I/O ports/CLKOUT (Note 3)	VoH	VdD - 0.7	-	-	V	$\begin{aligned} & \mathrm{IOH}=-3.0 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$
D090A			VDD - 0.7	-	-	V	$\begin{aligned} & \mathrm{IOH}=-2.5 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
D092	OSC2		$\text { VDD - } 0.7$	-	-	V	$\begin{aligned} & \mathrm{IOH}=-1.3 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$
D092A			VDD - 0.7	-	-	V	$\begin{aligned} & \mathrm{IOH}=-1.0 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
D100	Capacitive Loading Specs on Output Pins OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2	ClO	-	-	50	pF	

\dagger Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.
2: The leakage current on the $\overline{M C L R}$ pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as coming out of the pin.
4: Extended operating range is Advance Information for this device.
5: When configured as external reset, the input leakage current is the weak pulll-up current of -10 mA minimum. This pull-up is weaker than the standard I/O pull-up.

TABLE 10-1: PULL-UP RESISTOR RANGES - PIC12C508/C509

Vdd (Volts)	Temperature (${ }^{\circ} \mathrm{C}$)	Min	Typ	Max	Units
GP0/GP1					
2.5	-40	38 K	42K	63K	Ω
	25	42K	48 K	63 K	Ω
	85	42K	49K	63K	Ω
	125	50K	55K	63K	Ω
5.5	-40	15K	17K	20K	Ω
	25	18K	20K	23K	Ω
	85	19K	22K	25K	Ω
	125	22K	24K	28K	Ω
GP3					
2.5	-40	285K	346K	417K	Ω
	25	343K	414K	532K	Ω
	85	368K	457K	532K	Ω
	125	431K	504K	593K	Ω
5.5	-40	247K	292K	360 K	Ω
	25	288K	341K	437K	Ω
	85	306K	371K	448K	Ω
	125	351K	407K	500K	Ω

* These parameters are characterized but not tested.

10.5 Timing Parameter Symbology and Load Conditions - PIC12C508/C509

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS
2. TppS

T			
F	Frequency	T	Time

Lowercase subscripts (pp) and their meanings:

pp			
2	to	mc	$\overline{\text { MCLR }}$
ck	CLKOUT	osc	oscillator
cy	cycle time	os	OSC1
drt	device reset timer	t0	TOCKI
io	l/O port	wdt	watchdog timer

Uppercase letters and their meanings:

S			
F	Fall	P	Period
H	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance

FIGURE 10-1: LOAD CONDITIONS - PIC12C508/C509

$\mathrm{CL}=50 \mathrm{pF}$ for all pins except OSC2
15 pF for OSC2 in XT, HS or LP modes when external clock is used to drive OSC1

10.6 Timing Diagrams and Specifications

FIGURE 10-2: EXTERNAL CLOCK TIMING - PIC12C508/C509

TABLE 10-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC12C508/C509

AC Characteristics		Standard Operating Conditions (unless otherwise specified) Operating Temperature $\quad 0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ (commercial), $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ (industrial), $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}(\text { extended })$ Operating Voltage VDD range is described in Section 10.1					
Parameter No.	Sym	Characteristic	Min	Typ ${ }^{(1)}$	Max	Units	Conditions
	Fosc	External CLKIN Frequency ${ }^{(2)}$	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	—	$\begin{gathered} 4 \\ 200 \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{kHz} \end{aligned}$	XT osc mode LP osc mode
		Oscillator Frequency ${ }^{(2)}$	$\begin{aligned} & 0.1 \\ & \text { DC } \end{aligned}$	—	$\begin{gathered} 4 \\ 200 \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{kHz} \end{aligned}$	XT osc mode LP osc mode
1	Tosc	External CLKIN Period ${ }^{(2)}$	$\begin{gathered} 250 \\ 250 \\ 5 \end{gathered}$	- - -	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns ns ms	EXTRC osc mode XT osc mode LP osc mode
		Oscillator Period ${ }^{(2)}$	$\begin{gathered} \hline 250 \\ 250 \\ 5 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} - \\ 10,000 \\ - \end{gathered}$	ns ns ms	EXTRC osc mode XT osc mode LP osc mode
2	Tcy	Instruction Cycle Time ${ }^{(3)}$	-	4/FOSC	-	-	
3	TosL, TosH	Clock in (OSC1) Low or High Time	$\begin{gathered} 50^{*} \\ 2^{*} \end{gathered}$	—	—	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ms} \end{aligned}$	XT oscillator LP oscillator
4	TosR, TosF	Clock in (OSC1) Rise or Fall Time	—	—	$\begin{aligned} & 25^{*} \\ & 50^{*} \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	XT oscillator LP oscillator

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
2: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
3: Instruction cycle period (TcY) equals four times the input oscillator time base period.

TABLE 10-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC12C508/C509

AC Characteristics		Standard Operating Conditions (unless otherwise specified) Operating Temperature $\quad 0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ (commercial), $-40^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+85^{\circ} \mathrm{C}$ (industrial), $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ (extended) Operating Voltage VDD range is described in Section 10.1					
Parameter No.	Sym	Characteristic	Min*	Typ ${ }^{(1)}$	Max*	Units	Conditions
		Internal Calibrated RC Frequency	3.64	4.00	4.32	MHz	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$
		Internal Calibrated RC Frequency	3.51	4.00	4.26	MHz	$\mathrm{V} D \mathrm{D}=2.5 \mathrm{~V}$

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 10-3: I/O TIMING - PIC12C508/C509

Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.

TABLE 10-4: TIMING REQUIREMENTS - PIC12C508/C509

AC Characteristics		Standard Operating Conditions (unless otherwise specified) Operating Temperature $\quad 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ (commercial) $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ (industrial) $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ (extended) Operating Voltage VDD range is described in Section 10.1				
Parameter No.	Sym	Characteristic	Min	Typ ${ }^{(1)}$	Max	Units
17	TosH2ioV	OSC1 \uparrow (Q1 cycle) to Port out valid ${ }^{(3)}$	-	-	100*	ns
18	TosH2iol	OSC1 \uparrow (Q2 cycle) to Port input invalid (//O in hold time)	TBD	-	-	ns
19	TioV2osH	Port input valid to OSC1 \uparrow (I/O in setup time)	TBD	-	-	ns
20	TioR	Port output rise time ${ }^{(3)}$	-	10	25**	ns
21	TioF	Port output fall time ${ }^{(3)}$	-	10	25**	ns

* These parameters are characterized but not tested.
** These parameters are design targets and are not tested. No characterization data available at this time.
Note 1: Data in the Typical ("Typ") column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
2: Measurements are taken in EXTRC mode.
3: See Figure 10-1 for loading conditions.
FIGURE 10-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC12C508/C509

Note 1: l/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.
2: Runs in MCLR or WDT reset only in XT and LP modes.

TABLE 10-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC12C508/C509

AC Characteristics		Standard Operating Conditions (unless otherwise specified) Operating Temperature $\quad 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ (commercial) $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ (industrial) $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ (extended) Operating Voltage VDD range is described in Section 10.1					
Parameter No.	Sym	Characteristic	Min	Typ ${ }^{(1)}$	Max	Units	Conditions
30	TmcL	$\overline{\text { MCLR }}$ Pulse Width (low)	2000*	-	-	ns	$\mathrm{VDD}=5 \mathrm{~V}$
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9*	18*	30*	ms	$\mathrm{VDD}=5 \mathrm{~V}$ (Commercial)
32	TDRT	Device Reset Timer Period ${ }^{(2)}$	9*	18*	30*	ms	$\mathrm{VDD}=5 \mathrm{~V}$ (Commercial)
34	Tioz	I/O Hi-impedance from $\overline{M C L R}$ Low	-	-	2000*	ns	

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
TABLE 10-6: DRT (DEVICE RESET TIMER PERIOD - PIC12C508/C509)

Oscillator Configuration	POR Reset	Subsequent Resets
IntRC \& ExtRC	18 ms (typical)	$300 \mu \mathrm{~s}$ (typical)
XT \& LP	18 ms (typical)	18 ms (typical)

FIGURE 10-5: TIMER0 CLOCK TIMINGS - PIC12C508/C509

TABLE 10-7: TIMERO CLOCK REQUIREMENTS - PIC12C508/C509

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

PIC12C5XX

