STANDARD PRODUCT SPECIFICATIONS (PRELIMINARY)

PRODUCT NAME	RF UNIT FOR JAPAN CORDLESS TELEPHONE
CUSTOMER P/N	
ALPS P/N	URZP9X219A
	(SLAVE)

1. APPLICATION

2. STANDARD OPERATING CONDITIONS
3. MECHANICAL CHARACTERISTICS
4. ELECTRICAL CHARACTERISTICS / TIMING CHART
5. RELIABILITY TEST
6. PIN DESCRIPTION
7. PLL IC PERFORMANCES
8. NOTES
9. ASSEMBLY DRAWING
10. PACKING

Page 2
Page 2
Page 2
Page $3 \sim 5$
Page 6
Page $7 \sim 8$
Page $9 \sim 12$
Page 13
Page 14
Page 15

1. APPLICATION

This specification shall apply to the RF unit for Japan Cordless Telephone.
2. STANDARD OPERATING CONDITIONS

2-1. GENERAL ITEMS

ITEM	SPECIFICATION	NOTE	
1	Communication System	Duplex	2 PLL, 1 TCXO
2	TX Frequency Coverage	$253.8625 \sim 254.9625 \mathrm{MHz}$	
3	RX Frequency Coverage	$380.2125 \sim 381.3125 \mathrm{MHz}$	1 st Lo: $358.9125 \sim 360.0125 \mathrm{MHz}$ 2nd Lo: 21.25 MHz
4	Channels / Spacing	$89 \mathrm{ch} / 12.5 \mathrm{kHz}$	
5	Supply Voltage Range	$+2.20 \mathrm{~V} \sim+5.50 \mathrm{~V}$	+2.4 V typ. Satisfy electrical specifications
6	Operating Voltage Range	$+2.15 \mathrm{~V} \sim+6.00 \mathrm{~V}$	
7	Absolute Maximum Supply	$+7.0 \mathrm{~V} \mathrm{max}$.	
8	Voltage Range	Operating Temperature Range	$-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$
9	Storage Temperature Range	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$	
10	Intermediate Frequency	21.3 MHz	1 st IF
		50 kHz	2 nd IF
11	Measurement Impedance	Nominal 50Ω	
12	Antenna TX/RX System	Dual	
13	Modulation Data System	Sub Carrier MSK	

2-2. OPERATING CONDITIONS

Standard Conditions: Temperature $\quad 25^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$
Humidity $\quad 65 \%$ RH

General Conditions: Temperature $\quad 20^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}$ Humidity 45 \% ~ 85 \%
The measurement is able to execute on General Conditions when it can exclude a problem of accuracy from the test results.

2-3. Absolute Power Unit
Absolute Power Unit is expressed in dB.
$1 \mathrm{~mW}=0 \mathrm{dBm}$
2-4. FM-IC
FM-IC is SANYO (LA8677V) or TOSHIBA (TA31180FN). Characteristics are equal.

3. MECHANICAL CHARACTERISTICS

3-1. ASPECT
There should not be contamination, scratches or strains on model.
3-2. DIMENSIONS
Refer to ASSEMBLY DRAWING.

3-3. MASS
15 g max.

4. ELECTRICAL CHARACTERISTICS

4-1. ELECTRICAL SPECIFICATIONS << TX: TRANSMITTER >>

	ITEM	SPECIFICATION				CONDITION
		UNIT	min.	typ.	max.	NOTE
1	TX Output Power	mW	5.0		12.0	Temperature: $0 \sim+40^{\circ} \mathrm{C}$
			7.0	9.5	11.5	Room temperature. Adjust: +9.5 mW
2	TX Frequency Stability	ppm	-3.8		+3.8	Temperature: $0 \sim+40^{\circ} \mathrm{C}$
			-2.0		+2.0	Room Temperature. Adjust: +1.0 ppm
3	TX Frequency Deviation	kHz	± 1.1	± 1.5	± 2.0	Mod. Freq. $=1 \mathrm{kHz}, 100 \mathrm{mV}$ rms LPF: 3 kHz , HPF: 300 Hz
4	Modulation Frequency Response	dB	-2	+0.5	+2	300 Hz : Ref. Freq. $=1 \mathrm{kHz}$
			-2	-0.1	+2	3 kHz
5	TX Distortion	\%		0.5	3.0	Mod. Freq. $=1 \mathrm{kHz}$, Dev. $=1.5 \mathrm{kHz}$ LPF: $3 \mathrm{kHz}, \mathrm{HPF}: 300 \mathrm{~Hz}$
6	TX S/N	dB	35	45		Mod. Freq. $=1 \mathrm{kHz}$, Dev. $=1.5 \mathrm{kHz}$ LPF: 3 kHz , HPF: 300 Hz
7	Spurious Emissions	dBm		-45	-35	$0 \sim 1.5 \mathrm{GHz}$
8	TX PLL Lock Up Time	ms		35	50	-10000 ch to 89ch, $\mathrm{CP}= \pm 400 \mu \mathrm{~A}$
				25	35	1ch to 89ch, $\mathrm{CP}= \pm 400 \mu \mathrm{~A}$
						Regular: $\mathrm{f} \pm 1 \mathrm{kHz}$
9	TX AMP Lock Up Time	ms		15	25	TX AMP ON, CP $= \pm 400 \mu \mathrm{~A}$
						Regular: $\mathrm{f} \pm 1 \mathrm{kHz}$
10	TX/RX Current Consumption	mA		53	63	

* TX performances satisfy this specification that the UNIT is in a general room environment, except for standardized characteristics especially about temperature range.
* Measurement Method (TX) Tool: ALPS Tools
Equipment: Modulation Analyzer (HP8901A or compatible) Filter: Internal BPF of Modulation Analyzer
* CP Output Current

ITEM No. 8, 9: $\pm 400 \mu \mathrm{~A}$
Other ITEM: $\quad \pm 100 \mu \mathrm{~A}$

4-2. ELECTRICAL SPECIFICATIONS << RX: RECEIVER >>

	ITEM	SPECIFICATION				CONDITION
		UNIT	min.	typ.	Max.	NOTE
1	RX Sensitivity	$\mathrm{dB} \mu \mathrm{V}$ EMF			+6.0	Mod.Freq. $=1 \mathrm{kHz}$, Dev. $=1.5 \mathrm{kHz}$ SINAD 12 dB
				+2.0	+4.0	
2	RX Frequency Bandwidth	kHz	8	10		-6 dB Bandwidth, NQ Method
3	Local OSC Stability	ppm	-3.8		+3.8	Correspond to TX Frequency Stability
4	RX Distortion	dB	20	28		$\begin{aligned} & \mathrm{RF}=+20 \mathrm{~dB} \mu \mathrm{~V} \text { EMF } \\ & \text { Mod.Freq. }=1 \mathrm{kHz} \text {, Dev. }=1.5 \mathrm{kHz} \end{aligned}$
5	RX S/N	dB	35	45		$\begin{aligned} & \mathrm{RF}=+60 \mathrm{~dB} \mu \mathrm{~V} \text { EMF } \\ & \text { Mod.Freq. }=1 \mathrm{kHz} \text {, Dev. }=1.5 \mathrm{kHz} \end{aligned}$
6	Protection Spurious Response	dB	40	50		$\begin{aligned} & \text { DES: Mod.Freq. }=1 \mathrm{kHz}, \text { Dev. }=1.5 \mathrm{kHz} \\ & \text { UND: Mod.Freq. }=400 \mathrm{~Hz}, \text { Dev. }=1.5 \mathrm{kHz} \end{aligned}$
7	Intermodulation Response	dB	47	52		DES: Mod.Freq. $=1 \mathrm{kHz}$, Dev. $=1.5 \mathrm{kHz}$ UND: Only Carrier
8	Adjacent Channel Selectivity	dB	50	55		$\begin{aligned} & \text { DES: Mod.Freq. }=1 \mathrm{kHz}, \text { Dev. }=1.5 \mathrm{kHz} \\ & \text { UND: Mod.Freq. }=400 \mathrm{~Hz}, \text { Dev. }=1.5 \mathrm{kHz} \end{aligned}$
9	Carrier Sense	dB $\mu \mathrm{V}$ EMF			+6	Carrier Sense ON Mod.Freq. $=1 \mathrm{kHz}$, Dev. $=1.5 \mathrm{kHz}$
	Switching Level		-3	0	+3	
10	Antenna Leakage	dBm		-60	-54	TX AMP OFF, TX VCO OFF, TX PLL OFF
11	Carrier Sense	ms		35	55	-10000 ch to 89ch, $\mathrm{CP}= \pm 400 \mu \mathrm{~A}$
	Switching Time			25	45	1ch to 89ch, $\mathrm{CP}= \pm 400 \mu \mathrm{~A}$
						$\mathrm{RF}=+12 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$ Mod. Freq. $=1 \mathrm{kHz}$, Dev. $=1.5 \mathrm{kHz}$ Carrier sense was switched over low from channel data input
12	Detector Output Level	mV	100	135	170	$\begin{aligned} & \mathrm{RF}=+60 \mathrm{~dB} \mu \mathrm{~V} \text { EMF } \\ & \text { Mod. }=1 \mathrm{kHz} \text {, Dev. }=1.5 \mathrm{kHz} \end{aligned}$
13	RX Current Consumption	mA		23	30	TX AMP OFF, TX VCO OFF, TX PLL OFF

* RX performances satisfy this specification on condition that the UNIT is in a general room environment, except for standardized characteristics especially about temperature range.
* Measurement Method (RX)

Tool: ALPS Tools
Filter: ALPS Tools (300 Hz ~ 3 kHz BPF) ITEM No. 1, 2, 4, 5, 6, 7, 8

* PLL IC Operating

RX measurement conditions: TX side PLL power off by PLL data.
(By reason of unstable the RX performance.)

* CP Output Current

ITEM No. $11 \quad \pm 400 \mu \mathrm{~A}$
Other ITEM $\pm 100 \mu \mathrm{~A}$

[TX TIMING CHART]

*1 RX VCO frequency offset by changing CP output current. ($\pm 300 \mathrm{~Hz}, 5 \mathrm{~ms}$ typ.)
*2 TX VCO frequency offset by changing CP output current.
*3 RX VCO frequency offset by switching TX AMP.
($\pm 300 \mathrm{~Hz}, 5 \mathrm{~ms}$ typ.)
*4 RX VCO frequency offset by TX PLL lock up.
(ON: 20 ms , OFF: 25 ms typ.)
($\pm 1 \sim 2 \mathrm{kHz}$ typ.)
[RX TIMING CHART]
[+ B switch ON]
[Switching over channel]

*1 RX VCO frequency offset by changing CP output current. ($\pm 300 \mathrm{~Hz}, 5 \mathrm{~ms}$ typ.)

5. RELIABILITY TEST

5-1. HIGH TEMPERATURE TEST (NO POWER APPLIED)
The UNIT shall meet the performance of TABLE-1 after storage at $+60{ }^{\circ} \mathrm{C}$ for 96 hours. The UNIT shall be removed from the test chamber and allowed to stabilize at room ambient conditions for a minimum of 1 hour prior to retest.

5-2. HIGH TEMPERATURE TEST (POWER APPLIED)

The UNIT shall meet the performance of TABLE-1 after storage at $+60^{\circ} \mathrm{C}$ for 96 hours. (Supply voltage according to standard operating conditions.) The UNIT shall be removed from the test chamber and allowed to stabilize at room ambient conditions for a minimum of 1 hour prior to retest. <Note> TX/RX VCO condition: on free run

5-3. LOW TEMPERATURE TEST (NO POWER APPLIED)
The UNIT shall meet the performance of TABLE-1 after storage at $-20^{\circ} \mathrm{C}$ for 96 hours. The UNIT shall be removed from the test chamber and allowed to stabilize at room ambient conditions for a minimum of 1 hour prior to retest.

5-4. THERMAL SHOCK TEST (NO POWER APPLIED)
The UNIT shall meet the performance of TABLE-1 after storage for 10 cycles. The UNIT shall be removed from the test chamber and allowed to stabilize at room ambient condition for a minimum of 1 hour prior to retest.

$$
1 \text { cycle }=\left(-20^{\circ} \mathrm{C} \text { for } 20 \text { minutes }\right)+\left(+80^{\circ} \mathrm{C} \text { for } 20 \text { minutes }\right)
$$

5-5. HUMIDITY TEST (NO POWER APPLIED)
The UNIT shall meet the performance of TABLE-1 after storage at $+60{ }^{\circ} \mathrm{C}$ and $90 \% \mathrm{RH}$ for 96 hours. The UNIT shall be removed from the test chamber and allowed to stabilize at room ambient condition for a minimum of 2 hours prior to retest.

5-6. VIBRATION TEST
The UNIT shall meet the performance of TABLE-1 after the following vibration. The UNIT shall be removed form the test chamber and allowed to stabilize at room ambient condition for a minimum of 1 hour prior to retest.

Vibration frequency $10 \sim 50 \sim 10 \mathrm{~Hz}$ (1 cycle / 1 minute)
Total amplitude
Direction

1 mm
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ (each direction 40 minutes)

5-7. DROP SHOCK TEST

The UNIT shall meet the performances of TABLE-1 after the following shock of drop.
Drop point (Height)
Receiving board
Drop times:
1 m
Wood Board ($20 \mathrm{~cm} \times 20 \mathrm{~cm} \times 3 \mathrm{~cm}$) min.
1 time
<<TABLE-1>>

	ITEM	SPECIFICATION	NOTE
1	TX Frequency Stability	$\pm 4.0 \mathrm{ppm}$ max.	
2	TX Output Power	$10 \mathrm{~mW},-50 \sim+20 \%$	
3	RX Sensitivity	$+6 \mathrm{~dB} \mu \mathrm{~V}$ EMF max.	
4	Local OSC Stability	$\pm 4.0 \mathrm{ppm}$ max.	
5	Antenna Leakage	-54 dBm max.	
6	Carrier Sense Switching Level	$+6 \mathrm{~dB} \mu \mathrm{~V}$ EMF max.	
7	TX Spurious Emissions	-26 dBm max.	$0 \sim 1.5 \mathrm{GHz}$

6. PIN ASSIGNMENT

No	Pin Name	Description	Equivalent circuit
11	+B SW	Internal regulator IC control Low = regulator IC OFF High = regulator IC ON High level $=+1.9 \mathrm{~V} \sim+5.5 \mathrm{~V}$	
12	+B	Supply voltage input $+2.20 \mathrm{~V} \sim+5.50 \mathrm{~V}$	(12) $\underset{\frac{\perp}{7}}{ } \xrightarrow{\text { Regutiator IC }}$
13	TX-MOD	Modulation signal input Input level: 100 mV rms typ. $Z_{\text {in }}=10 \mathrm{k} \Omega \mathrm{typ}$.	
14	RF GND	Antenna GND	
15	ANT	Antenna input / output (Electrical characteristics measurement terminal) Nominal 50Ω	
16	ANT	Antenna input / output Nominal 50Ω	

7. PLL IC PERFORMANCES

DESCRIPTION OF FUNCTION AND OPERATION

(1) Entry of serial data

- Serial data used to control the IC is input through three terminals, CLK, DATA and STB.
[1] During the rise of a clock pulse, data is fed to the shift register in IC in order from the LSB.
[2] Upon the reception of all data, the strobe signal (STB) is made "H".
[3] After the reception of a strobe signal (STB) of the "H" level, the data stored in the shift register is transferred to the latch in the block selected by the group code, whereby the IC is controlled.
[4] A counters start to operate after the reception of a strobe signal (STB) of the "L" level.
- The three terminals, CLK, DATA and STB, contain schmitt trigger circuits to prevent the data errors by noise, etc.
- Serial data group and group code

The IC has control divided into four groups that they may be controlled independent of one another. Each group is identified by a 2 bits group code attached at the data end.

CODE	ITEM
10	Number of divisions by TX programmable divider
01	Number of divisions by RX programmable divider
11	Number of divisions by reference divider (Xin)
00	Optional control

- Serial data input timing

(2) Programmable dividers (TX, RX)
- These programmable dividers are composed of a 5 bits swallow counter (5 bits programmable divider), a 10 bits programmable counter, and a two-modulars prescaler providing 64 and 66 divisions.
- Swallow counter system is adopted to set high reference frequency.
- Sending certain data to the swallow counter and the programmable counter allows the setting of any of 1984 to 65534 divisions (multiple of two).
- The programmable counter and swallow counter are set by each channel. Each channel is specified by a group code.

(3) Reference divider
- This block generates the reference frequency for the PLL.
- The reference divider is composed of an 11 bit reference divider and half fixed divider.
- Sending certain data to the reference divider allows the setting of 6 to 4094 divisions (multiple of two).

$D=D 0+D 1 \times 2^{1}+D 2 \times 2^{2}+D 3 \times 2^{3}+\ldots+D 10 \times 2^{10}$
Number of divisions = D
$6 \leq$ Number of divisions ≤ 4094

The example of setting number of divisions in case of
Reference frequency : 21.25 MHz
Start VCO frequency : 253.8625 MHz
Channel step $: 12.5 \mathrm{kHz}$

- Set up phase comparator frequency

Since a programmable divider is multiple of two, phase comparator frequency is set a half of frequency step.
Phase comparator frequency $=12.5 \times 10^{3} \div 2=6.25 \mathrm{kHz}$

- Set up programmable divider divisions

$$
\begin{aligned}
& 253.8625 \times 10^{6} \div\left(12.5 \times 10^{3} \div 2\right)=40618 \\
& 40618=2(32 N+A) \\
& N=634, A=21
\end{aligned}
$$

- Set up reference divider divisions

$$
\begin{aligned}
& 21.25 \times 10^{6} \div\left(12.5 \times 10^{3} \div 2\right)=3400 \\
& 2 D=3400 \\
& D=1700(11010100100 \text { binary })
\end{aligned}
$$

LSB	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	1	1
0	0	1	0	0	1	0	1	0	1	1	1	1	

- TX set up at 1 channel

TX VCO frequency $=$ TX carrier frequency $=253.8625 \mathrm{MHz}$
Number of divisions $=\left(253.8625 \times 10^{6}\right) \div\left(6.25 \times 10^{3}\right)$
$=40618$
$=2(32 \mathrm{~N}+\mathrm{A})$
$\mathrm{N}=634$ (1001111010 binary), $\mathrm{A}=21$ (10101 binary)

- $R X$ set up at 1 channel

RX VCO frequency $=$ RX carrier frequency $-21.3 \mathrm{MHz}=358.9125 \mathrm{MHz}$
Number of divisions $=\left(358.9125 \times 10^{6}\right) \div\left(6.25 \times 10^{3}\right)$
$=57426$
$=2(32 N+A)$
$N=897$ (110000001 binary), $A=9$ (01001 binary)

LSB	A0	A1	A2	A3	A4	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9		
TXX	1	0	1	0	1	0	1	0	1	1	1	1	0	0	1	1	0
R	0	0	1	0	1	0	0	0	0	0	0	1	1	1	0	1	

(4) Optional control

- The optional control below is available.
[1] Test mode (Usually set up T1 = T2 = "0").
[2] Control of the charge pump output current for each channel.
[3] Output terminal for Lock detector.
[4] Standby control of each channel.

T1, T2 : Bit for test mode
CPT1, CPT2 : Switchover bit for charge pump output current (TX)
CPR1, CPR2 : Switchover bit for charge pump output current (RX)
LD1, LD2 : Control bit for lock detector output
SBT, SBR : Standby control bit (TX, RX)

* : Disregard any data (Meaningless bits)

- Description of options including their control
[1] Test mode (T1, T2)
Bit "T1, T2" is for test mode. In other than the test mode, set this bit at " 0 ".
[2] Control of charge pump output current (CPT, CPR)
This IC uses a constant current output type charge pump circuit. Output current is varied by controlling "CPT1, CPT2, CPR1, CPR2"

CHANNEL	CONTROL BIT		CHARGE PUMP OUTPUT CURRENT
TX	CPT1	CPT2	
RX	CPR1	CPR2	
	0	0	$\pm 0 \mu \mathrm{~A}$
	0	1	$\pm 100 \mu \mathrm{~A}$
	1	0	$\pm 200 \mu \mathrm{~A}$
	1	1	$\pm 400 \mu \mathrm{~A}$

- At +B switching on, switching over channel and TX-AMP on

CP output current $= \pm 400 \mu \mathrm{~A}$ (High speed lock up)
This worsen S / N

- At talking

CP output current $= \pm 100 \mu \mathrm{~A}$ (Slow speed lock up)

- RX VCO frequency and detector output level offset by changing CP output current.

Use detector output signal after 10 ms from changing CP output current.
[3] Lock detector output
When phase comparator detects phase difference, LD terminal output " H ". When phase comparator locks, LD terminal output "L". On standby, outputs "L". LD terminal output is controlled by "SBT", "SBR", "LD1" and "LD2". LD terminal output is open drain output.

CONTROL BIT		LOCK DETECTOR
OD1	LD2	
0	0	H
0	1	TX only detect
1	0	RX only detect
1	1	TX and RX detect

On unlock = "H"
On lock = "L"
On standby = "L"
[4] Standby control (SBT, SBR)
Available standby control for receiver and transmitter independent of each other.

CONTROL BIT		STATE		
SBT	SBR	TX	RX	REF
0	0	ON	ON	ON
0	1	ON	OFF	ON
1	0	OFF	ON	ON
1	1	OFF	OFF	ON

On standby
Current consumption : About 1 mA
Division data : Hold
Other circuit power : Off

8. NOTES

(1) Not washable.
(2) We can not guarantee this specifications in these case,
[1] Add the force to the coil.
[2] Adjust the variable resistor or trimmer capacitor.
(3) Soldering condition
[1] Dip soldering
$\begin{array}{ll}\text { Soldering temperature } & 260^{\circ} \mathrm{C} \text { max. } \\ \text { Dipping time } & 10 \mathrm{~s} \text { max }\end{array}$
Dipping number of time
Preheat temperature
Preheat time
Amount of flux form
[2] Manual soldering
Soldering temperature $\quad 320^{\circ} \mathrm{C}$ max.
Soldering time 3 s max.
(4) Do not open the cover of the both sides.

PACKING

