STANDARD PRODUCT SPECIFICATIONS (PRELIMINARY)

PRODUCT NAME	RF UNIT FOR JAPAN CORDLE	SS TELEPHONE
CUSTOMER P/N ALPS P/N	URZP9X219A (SLAVE)	
1. APPLICATION		Page 2
2. STANDARD OPERA	TING CONDITIONS	Page 2
3. MECHANICAL CHAP	RACTERISTICS	Page 2
4. ELECTRICAL CHAR	ACTERISTICS / TIMING CHART	Page 3 ~ 5
5. RELIABILITY TEST		Page 6
6. PIN DESCRIPTION		Page 7 ~ 8
7. PLL IC PERFORMAN	NCES	Page 9 ~ 12
8. NOTES		Page 13
9. ASSEMBLY DRAWIN	٨G	Page 14
10. PACKING		Page 15

					DSGD.				X219A
					CHKD.		TITLE	JRZP9	PRODUCT
								JRZP9	SPECIFICATION
					APPD.		DOCUMENT NO.		
									(1/15)
								<u> </u>	
SYMB.	DATE OR NO.	APPD.	CHKD.	DSGD.		ALPS ELE		CO., LI	D.

1. APPLICATION

This specification shall apply to the RF unit for Japan Cordless Telephone.

2. STANDARD OPERATING CONDITIONS

2-1. GENERAL ITEMS

	ITEM	SPECIFICATION	NOTE
1	Communication System	Duplex	2 PLL, 1 TCXO
2	TX Frequency Coverage	253.8625 ~ 254.9625 MHz	
3	RX Frequency Coverage	380.2125 ~ 381.3125 MHz	1st Lo: 358.9125 ~ 360.0125 MHz 2nd Lo: 21.25 MHz
4	Channels / Spacing	89 ch / 12.5 kHz	
5	Supply Voltage Range	+2.20 V ~ +5.50 V	+2.4 V typ.
			Satisfy electrical specifications
6	Operating Voltage Range	+2.15 V ~ +6.00 V	
7	Absolute Maximum Supply	+7.0 V max.	
	Voltage Range		
8	Operating Temperature Range	-10 °C ~ +50 °C	
9	Storage Temperature Range	-20 °C ~ +60 °C	
10	Intermediate Frequency	21.3 MHz	1st IF
		50 kHz	2nd IF
11	Measurement Impedance	Nominal 50 Ω	
12	Antenna TX/RX System	Dual	
13	Modulation Data System	Sub Carrier MSK	

2-2. OPERATING CONDITIONS

Standard Conditions:	Temperature Humidity	25 °C ± 2 °C 65 % RH
General Conditions:	Temperature	20 °C ~ 35 °C
	Humidity	45 % ~ 85 %

The measurement is able to execute on General Conditions when it can exclude a problem of accuracy from the test results.

2-3. Absolute Power Unit

Absolute Power Unit is expressed in dB. 1 mW = 0 dBm

2-4. FM-IC

FM-IC is SANYO (LA8677V) or TOSHIBA (TA31180FN). Characteristics are equal.

3. MECHANICAL CHARACTERISTICS

3-1. ASPECT

There should not be contamination, scratches or strains on model.

3-2. DIMENSIONS

Refer to ASSEMBLY DRAWING.

3-3. MASS

15 g max.

								X219A
								_
						TITLE	JRZP9	PRODUCT
							JKZF9	SPECIFICATION
						DOCUMENT NO.		
								(2/)
							co	
SYMB.	DATE OR NO.	APPD.	CHKD.	DSGD.	rs ele	CTRIC	UU., LI	$\boldsymbol{\boldsymbol{\mathcal{U}}}$.

4. ELECTRICAL CHARACTERISTICS

4-1. ELECTRICAL SPECIFICATIONS << TX: TRANSMITTER >>

	ITEM		SPECIFICATION			CONDITION	
		UNIT	min.	typ.	max.	NOTE	
1	TX Output Power	mW	5.0		12.0	Temperature: 0 ~ +40 °C	
			7.0	9.5	11.5	Room temperature. Adjust: +9.5 mW	
2	TX Frequency Stability	ppm	-3.8		+3.8	Temperature: 0 ~ +40 °C	
			-2.0		+2.0	Room Temperature. Adjust: +1.0 ppm	
3	TX Frequency Deviation	kHz	±1.1	±1.5	±2.0	Mod. Freq. = 1 kHz, 100 mV rms	
						LPF: 3 kHz, HPF: 300 Hz	
4	Modulation Frequency	dB	-2	+0.5	+2	300 Hz Ref. Freq. = 1 kHz	
	Response		-2	-0.1	+2	3 kHz	
5	TX Distortion	%		0.5	3.0	Mod. Freq. = 1 kHz, Dev. = 1.5 kHz	
						LPF: 3 kHz, HPF: 300 Hz	
6	TX S/N	dB	35	45		Mod. Freq. = 1 kHz, Dev. = 1.5 kHz	
						LPF: 3 kHz, HPF: 300 Hz	
7	Spurious Emissions	dBm		-45	-35	0 ~ 1.5 GHz	
8	TX PLL Lock Up Time	ms		35	50	-10000ch to 89ch, CP = ±400 μA	
				25	35	1ch to 89ch, CP = ±400 µA	
		Regular:f±1 kHz					
9	TX AMP Lock Up Time	ms		15	25	TX AMP ON, CP = $\pm 400 \ \mu A$	
	-	Regular:f±1 kHz					
10	TX/RX Current Consumption	mA		53	63		

* TX performances satisfy this specification that the UNIT is in a general room environment, except for standardized characteristics especially about temperature range.

* Measurement Method (TX) Tool: ALPS Tools Equipment: Modulation Analyzer (HP8901A or compatible) Filter: Internal BPF of Modulation Analyzer

* CP Output Current ITEM No. 8, 9: ±400 μA Other ITEM: ±100 μA

								X219A
						TITLE	JRZP9	PRODUCT
							JKZF9	SPECIFICATION
						DOCUMENT NO.		
								(3/)
							<u> </u>	
SYMB.	DATE OR NO.	APPD.	CHKD.	DSGD.	PS ELE		<u> </u>	<i>D</i> .

	4-2. ELECTRICAL SPECIFIC	ATIONS <<	RX: R	ECEI	/ER >:	>
	ITEM	SPEC		TION		CONDITION
		UNIT	min.	typ.	Max.	NOTE
1	RX Sensitivity	dBµV EMF				0 ~ +40 °C Mod.Freq.=1 kHz, Dev.=1.5 kHz
				+2.0	+4.0	Room Temp. SINAD 12 dB
	RX Frequency Bandwidth	kHz	8	10		-6 dB Bandwidth, NQ Method
	Local OSC Stability	ppm	-3.8		+3.8	Correspond to TX Frequency Stability
4	RX Distortion	dB	20	28		$RF = +20 dB\mu V EMF$
5	RX S/N	dB	35	45		Mod.Freq. = 1 kHz, Dev. = 1.5 kHz RF = +60 dBµV EMF
6	Protection Spurious Response	dB	40	50		Mod.Freq. = 1 kHz, Dev. = 1.5 kHz DES: Mod.Freq. = 1 kHz, Dev. = 1.5 kHz
_		10	47	50		UND: Mod.Freq. = 400 Hz, Dev. = 1.5 kHz
1	Intermodulation Response	dB	47	52		DES: Mod.Freq. = 1 kHz, Dev. = 1.5 kHz UND: Only Carrier
8	Adjacent Channel Selectivity	dB	50	55		DES: Mod.Freq. = 1 kHz, Dev. = 1.5 kHz UND: Mod.Freq. = 400 Hz, Dev. = 1.5 kHz
9	Carrier Sense	dBµV EMF			+6	$0 \sim +40 \degree C$ Carrier Sense ON
	Switching Level		-3	0	+3	Room Temp. Mod.Freq.=1 kHz, Dev.=1.5 kHz
	Antenna Leakage	dBm		-60	-54	TX AMP OFF, TX VCO OFF, TX PLL OFF
11	Carrier Sense	ms		35	55	-10000ch to 89ch, CP = ±400 μA
	Switching Time			25	45	1ch to 89ch, CP = ±400 μA
						$RF = +12 dB\mu V EMF$
						Mod. Freq. = 1 kHz, Dev. = 1.5 kHz
						Carrier sense was switched over low
10	Data stan Osta still such		400	405	470	from channel data input
12	Detector Output Level	mV	100	135	170	$RF = +60 dB\mu V EMF$
13	RX Current Consumption	mA		23	30	Mod. = 1 kHz, Dev. = 1.5 kHz TX AMP OFF, TX VCO OFF, TX PLL OFF
	environment, except f * Measurement Method Tool: ALPS Tools Filter: ALPS Tools (3 * PLL IC Operating RX measurement co (By reason of unstat * CP Output Current ITEM No. 11 ±40	ior standardi (RX) 300 Hz ~ 3 k onditions: TX	zed cł Hz BF	naracté ²F) I⁻ PLL pe	Eristics TEM N ower c	
		_				X219A
		-				TITLE URZP9 PRODUCT SPECIFICATION
		4				DOCUMENT NO.
					_ '	
SYMB	. DATE OR NO. APPD. CHKD. DSGE).	AL	23	EL	ECTRIC CO., LTD.

5. RELIABILITY TEST									
5-1. HIGH TEMPERATURE TEST (NO The UNIT shall meet the perform shall be removed from the test cha minimum of 1 hour prior to retest.	nance of TABLE-1 after st								
The UNIT shall meet the perforn voltage according to standard op chamber and allowed to stabilize at	5-2. HIGH TEMPERATURE TEST (POWER APPLIED) The UNIT shall meet the performance of TABLE-1 after storage at +60 °C for 96 hours. (Supply voltage according to standard operating conditions.) The UNIT shall be removed from the test chamber and allowed to stabilize at room ambient conditions for a minimum of 1 hour prior to retest. <note> TX/RX VCO condition: on free run</note>								
5-3. LOW TEMPERATURE TEST (NO The UNIT shall meet the perform shall be removed from the test cha minimum of 1 hour prior to retest.	nance of TABLE-1 after st								
5-4. THERMAL SHOCK TEST (NO PO The UNIT shall meet the perform removed from the test chamber and hour prior to retest. 1 cycle = (-20 °C for 20 minut	nance of TABLE-1 after s d allowed to stabilize at roo	om ambient c							
5-5. HUMIDITY TEST (NO POWER AP The UNIT shall meet the perform hours. The UNIT shall be removed condition for a minimum of 2 hours	mance of TABLE-1 after I from the test chamber a								
Total amplitude 1 mm		om ambient c uute)							
5-7. DROP SHOCK TEST The UNIT shall meet the performa Drop point (Height) 1 m Receiving board Wood Drop times: 1 time	Board (20 cm X 20 cm X	Ū.	nock of drop.						
< <table-1>></table-1>									
ITEM	SPECIFICATION		NOTE						
1 TX Frequency Stability	±4.0 ppm max.								
2 TX Output Power 3 RX Sensitivity	10 mW, -50 ~ +20 %								
3 RX Sensitivity 4 Local OSC Stability	+6 dBµV EMF max. ±4.0 ppm max.								
5 Antenna Leakage	-54 dBm max.								
6 Carrier Sense Switching Level	+6 dBµV EMF max.								
7 TX Spurious Emissions	-26 dBm max.	0 ~ 1.5 G	Hz						
				X219A					
		TITLE .		PRODUCT					
		line (JRZP9	SPECIFICATION					
	D	OCUMENT NO.							
				(6/)					

SYMB. DATE OR NO. APPD.

CHKD. DSGD.

ALPS ELECTRIC CO., LTD.

6. PIN ASSIGNMENT

No	Pin Name	Description	Equivalent circuit
	RSSI	Voltage output of the received signal	
		strength indicator (RSSI).	
		+0.1 V (Low level RF) ~ +1.9 V (High level RF) at 10 M Ω load	
2	CAR SENS	Carrier sense output	!
		Low = carrier sensed	
		High = no carrier sensed	
-		Open collector output ($I_{SINK} = 0.2 \text{ mA}$)	
3	REG OUT	Regulated voltage output (Vo) $V_{OUT} = +2.0 V$ typ., $I_{OUT} = 2 mA max$.	Control
		$v_{001} = v_{2.0} v_{1001} = 2 m A max.$	(3) Regulator IC (12)
			Image: Contract of the second seco
4	DET OUT	Detected signal output	
		Output level: 135 mV rms typ. $Z_{OUT} = 620 \Omega$ typ.	
		∠ _{OUT} − 0∠0 32 typ.	
5	LOCK DET	PLL lock detector output	PLL IC
		Low = PLL locked	
		High = PLL unlocked Open drain output	
6	GND		
			6
7	PLL CLK	PLL clock pulse input for shift registers	
8	PLL STB	PLL strobo pulso isput	
0		PLL strobe pulse input	
			ITEM min. typ. max. UNIT
9	PLL DATA	PLL binary data input	"H" Level +1.6 +2.0 +5.7 V
		$D_n D_{n-1}$ $D_2 D_1$	"L" Level -0.2 0 +0.4 V "H" Current +1.0 μA
			"H" Current +1.0 μA "L" Current -1.0 μA
10	TX-AMP	TX-AMP control	
		Low = TX-AMP ON	
		High = TX-AMP OFF	
		<u> </u>	
			X219A
			TITLE URZP9 PRODUCT SPECIFICATION
			DOCUMENT NO. (7/)
YMB.	DATE OR NO. A	PPD. CHKD. DSGD. ALPS E	LECTRIC CO., LTD.

12	+B SW	Internal regulat Low = regulato High = regulato	r IC OFF		Equivalent circ	
		High level = +1		(11)	Regulator IC	
13	+B	Supply voltage +2.20 V ~ +5.5	input		Input	
	TX-MOD	Modulation sign Input level: 100 Z _{in} = 10 kΩ typ.				
14	RF GND	Antenna GND				
15	ANT	Antenna input / (Electrical char terminal) Nominal 50 Ω	' output acteristics measureme	ent		
16	ANT	Antenna input / Nominal 50 Ω	'output			
			-			X219A
ᅼ			-	TITLE	URZP9	PRODUCT SPECIFICATION
				DOCUMEN	ENG	

7. PLL IC PERFORMANCES

DESCRIPTION OF FUNCTION AND OPERATION

(1) Entry of serial data

- Serial data used to control the IC is input through three terminals, CLK, DATA and STB.
 - [1] During the rise of a clock pulse, data is fed to the shift register in IC in order from the LSB.
 - [2] Upon the reception of all data, the strobe signal (STB) is made "H".
 - [3] After the reception of a strobe signal (STB) of the "H" level, the data stored in the shift register is transferred to the latch in the block selected by the group code, whereby the IC is controlled.[4] A counters start to operate after the reception of a strobe signal (STB) of the "L" level.
- The three terminals, CLK, DATA and STB, contain schmitt trigger circuits to prevent the data errors by noise, etc.
- Serial data group and group code

The IC has control divided into four groups that they may be controlled independent of one another. Each group is identified by a 2 bits group code attached at the data end.

CODE	ITEM
10	Number of divisions by TX programmable divider
01	Number of divisions by RX programmable divider
11	Number of divisions by reference divider (Xin)
00	Optional control

									X219
									7210
							TITLE	JRZP9	PRODUCT
								JKZF9	SPECIFICATION
							DOCUMENT NO.		
									(9/)
								columna	
SYMB.	DATE OR NO.	APPD.	CHKD.	DSGD.	AL	rs ele		60., LI	Ι υ .

(2)	10 bits p • Swallow • Sending 1984 to 6	rogram rogram counte certair 65534 gramm	mable mable er syste n data t division	dividers counte m is ac o the s is (mult	s are cou er, and a lopted to wallow of tiple of ty	two-m set h counte vo).	igh re r and	ars pr eferer d the	escale ce fre progra	er pro quen imma	viding cy. ble co	g 64 a ounte	nd 66 r allov	divis	sions. e sett	ble divider), a ing of any o pecified by a	f
(3)	A : Nu 19 Reference o • This bloc • The refer	Swallo = A0 + = D0 + imber (84 ≤ N divider ck gene rence (w coun A1 x 2 D1 x 2 of divisi umber erates t divider	ter : A 1 + A2 : 1 + D2 ons = 2 of divis he refe is comp	posed of	3 x 2 ³ A) 5534 equen an 11	+ A4 +…+ cy foi	x 2 ⁴ - D9 x r the F eferer	PLL. nce div	vider a	and h	alf fix		vider.	TX RX	2 code : 10 : 01	
	• Sending certain data to the reference divider allows the setting of 6 to 4094 divisions (multiple of two). LSB D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 1 1 Reference divider : D Group code $D = D0 + D1 \times 2^1 + D2 \times 2^2 + D3 \times 2^3 + + D10 \times 2^{10}$ Number of divisions = D $6 \le $ Number of divisions ≤ 4094																
	 The example of setting number of divisions in case of Reference frequency : 21.25 MHz Start VCO frequency : 253.8625 MHz Channel step : 12.5 kHz Set up phase comparator frequency Since a programmable divider is multiple of two, phase comparator frequency is set a half of frequency step. Phase comparator frequency = 12.5 X 10³ ÷ 2 = 6.25 kHz 																
	4061	8625 X	< 10 ⁶ ÷ 32N + A	(12.5 X	(10 ³ ÷ 2		518										
																X219	
										TITL	E	l	JRZ	<u>2</u> P9		PRODUCT SPECIFICATION	ЛС
										DOC	UMEN	IT NO.				(10 /)
						Δ			ELE	=_	TP		<u> </u>	ว	17	•	,
SYMB.	DATE OR NO.	APPD.	CHKD.	DSGD.		A		J			IR			J.,		υ.	

		21.2 2D =	5 X 10 3400	ence d) ⁶ ÷ (12 11010	2.5 X	10 ³ ÷	2) = 3	400											
	LS	вD	0 D	1 D2	2 D3	D4	D5	D6	D7		3 D	9 D1	0 1	1					
		-) 0	-	0	0	1	0	1	0	-		_	1					
	 TX set up at 1 channel TX VCO frequency = TX carrier frequency = 253.8625 MHz Number of divisions = (253.8625 X 10⁶) ÷ (6.25 X 10³) = 40618 = 2(32N + A) N= 634 (1001111010 binary), A= 21 (10101 binary) RX set up at 1 channel RX VCO frequency = RX carrier frequency - 21.3 MHz = 358.9125 MHz Number of divisions = (358.9125 X 10⁶) ÷ (6.25 X 10³) = 57426 = 2(32N + A) N= 897 (110000001 binary), A= 9 (01001 binary) 																		
LSE	3 A0	A1	A2	A3	A4	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9				
TX		0	1	0	1	0	1	0	1	1	1	1	0	0	1	1	0		
RX	1	0	0	1	0	1	0	0	0	0	0	0	1	1	1	0	1		
(4)	[2] [3] [4]	optic Test Cont Outp Stan	onal co mode trol of out ter dby co	e (Usu the ch minal ontrol	ally senarge for Lo of eac	et up ⁻ pump ck de ch cha	T1 = T outpu tector annel.	2 = " it cur	rent f				I	1.					7
		T1	T1		[1]CF	2T2	_D1	LD2	SB			PR2	*	*	S	BR	0	0	
			mode	outp	arge pur out curr (TX)	ent	.ock de	tector	Stand (TX	-	harge utput ci (RX	urrent		ningles bits		undby RX)	Group	code	
	T1, T2: Bit for test modeCPT1, CPT2: Switchover bit for charge pump output current (TX)CPR1, CPR2: Switchover bit for charge pump output current (RX)LD1, LD2: Control bit for lock detector outputSBT, SBR: Standby control bit (TX, RX)*: Disregard any data (Meaningless bits)																		
																			K 219
									+			ТІТ	LE			ZP9		PROD	UCT
									+			DO	CUME			0			IFICATION
						\rightarrow										•			11/)
SYMB.	DATE O	R NO.	APPD.	СНКЕ). DSG	BD.		A	LP	S	EL	EC	;TF	RIC	: C	O .,	L7	D.	

• Description of options including their control

- [1] Test mode (T1, T2)
 - Bit "T1, T2" is for test mode. In other than the test mode, set this bit at "0".
- [2] Control of charge pump output current (CPT, CPR)

This IC uses a constant current output type charge pump circuit. Output current is varied by controlling "CPT1, CPT2, CPR1, CPR2"

CHANNEL	CONTR	ROL BIT	CHARGE PUMP OUTPUT CURRENT			
TX	CPT1	CPT2				
RX	CPR1	CPR2	(CP)			
	0	0	±0 μA			
	0	1	±100 μA			
	1	0	±200 μΑ			
	1	1	±400 μA			

- At +B switching on, switching over channel and TX-AMP on CP output current = ±400 µA (High speed lock up) This worsen S/N
- At talking
- CP output current = $\pm 100 \mu$ A (Slow speed lock up)
- RX VCO frequency and detector output level offset by changing CP output current. Use detector output signal after 10 ms from changing CP output current.

[3] Lock detector output

When phase comparator detects phase difference, LD terminal output "H". When phase comparator locks, LD terminal output "L". On standby, outputs "L". LD terminal output is controlled by "SBT", "SBR", "LD1" and "LD2". LD terminal output is open drain output.

CONTR	OL BIT	LOCK DETECTOR				
LD1	LD2	OUTPUT STATE				
0	0	Н				
0	1	TX only detect				
1	0	RX only detect				
1	1	TX and RX detect				

On unlock = "H" On lock = "L" On standby = "L"

[4] Standby control (SBT, SBR)

Available standby control for receiver and transmitter independent of each other.

CONTR	OL BIT	STATE					
SBT	SBR	TX	RX	REF			
0	0	ON	ON	ON			
0	1	ON	OFF	ON			
1	0	OFF	ON	ON			
1	1	OFF	OFF	ON			

On standby Current consumption : About 1 mA Division data : Hold Other circuit power : Off

									X219
							TITLE	JRZP9	PRODUCT
					1			JKZP9	SPECIFICATION
							DOCUMENT NO.		
									(12/)
								~ 1	
SYMB.	DATE OR NO.	APPD.	CHKD.	DSGD.		PS ELE		UU., LI	$\boldsymbol{\nu}.$

										,
	8. N	IOTES								
	(1) N	lot washab	le.							
	(2) V	Ve can not [1] Add the	guarar force	to the c	coil.	ifications in thes				
	(3) S 	Soldering co [1] Dip sold Solder Dippin Dippin Prehe Amou [2] Manual Solder	ondition dering ring ten g time g num g time at temp at time nt of flu solder ring ten ring tim	n nperatu ber of t beratur ux form ing nperatu ie	ure ime e ure	PWB to the con 320 °C max. 3 s max.	d to be extent w		go up from surro	oundings of
										X219
								TITLE		PRODUCT SPECIFICATION
								DOCUMENT NO.		(13/)
						ΔΙ			CO., L7	
S	YMB. [DATE OR NO.	APPD.	CHKD.	DSGD.				<u> </u>	

А

В

С

D

