Цифровые мультиметры

BM9205, BM9208

1. Введение

Конструкция мультиметра ВМ920 выполнена на основе большой интегральной схемы и аналого-цифрового преобразователя в качестве ядра, оснащена глобальной защитой от перегрузки и позволяет измерять постоянные и переменные напряжение и ток, сопротивление, емкость, частоту, температуру, падение напряжения на диодах в режиме прямого тока, параметры транзисторов, выполнять прозвонку электрических цепей, обнаруживать инфракрасные сигналы дистанционного управления и т.д.

2. Правила безопасной работы

- Прибор модели ВМ920 производится в соответствии со стандартом IEC1010-1 для категории перенапряжения САТ I 1000 В. Перед началом работы с прибором внимательно прочтите данную инструкцию по эксплуатации.
- Эксплуатация прибора со снятой задней крышкой представляет опасность и не допускается.
- Прежде чем приступить к работе с прибором, удостоверьтесь, что изоляция на измерительных проводах мультиметра в полном порядке и не имеет повреждений, а сами провода не имеют разрывов.
- Переключатель измерительных функций должен быть установлен в надлежащее положение
- Во избежание поражения электрическим током и получения травм входной сигнал не должен превышать указанные в характеристиках пределы.
- Режим и предел измерения не должны изменяться в процессе измерения.
- При измерении постоянного напряжения выше 50 В и переменного напряжения выше 36 В будьте особенно осторожны во избежание поражения электрическим током.
- Когда на дисплее появляется значок « э», это означает, что заряд батареи недостаточен, и для нормальной работы мультиметра ее следует заменить на новую.
- При замене предохранителя необходимо использовать предохранитель с теми же характеристиками.
- Следует проводить калибровку мультиметра не реже раза в год.

3. Общие характеристики

- 1. Индикация разряженной батареи: « 💷».
- 2. Максимальное отображаемое значение: 1999 (3½ разряда).
- 3. Автоматическое отключение: питание мультиметра автоматически отключается через 15 минут после неактивности прибора.
- 4. Входное гнездо 10 А: не защищено предохранителем.
- 5. Входное гнездо mA: защищено самовосстанавливающимся предохранителем 0,2A/250B.
- 6. Источник питания: батарея 9 В типа NEDA, 6F22 или их эквивалент.
- 7. Условия окружающей среды:
- 1) Рабочая температура: 0-+40°С при влажности <75%.
- 2) Температура хранения:-10-+50°С при влажности <85%.

4. Технические характеристики

Погрешность приведена в виде $\pm (a\%$ от показания + число единиц младшего разряда).

Указанная точность гарантируется в течение 1 года при температуре $23\pm5^{\circ}$ С и относительной влажности <70%.

4.1. Постоянное напряжение

mm mooreammee manp		
Предел измерения	Разрешение	Точность
200 мВ	0,1 мВ	
2 B	1 мВ	±(0 E9/ . E)
20 B	10 мВ	±(0,5%+5)
200 B	100 мВ	
1000 B	1 B	±(0,8%+5)

Входной импеданс:

1 МОм – на пределах измерения 200 мВ и 2 В.

10 МОм - на остальных пределах измерения.

Защита от перегрузки:

250 В - на пределах измерения 200 мВ и 2 В.

1000 В – на остальных пределах измерения.

4.2. Переменное напряжение

Предел	Разрешение	Точность	
Измерения		BM9205	BM9208
200 мВ	0,1 мВ	±(1,2%+5)	-
2 B	1 мВ		
20 B	10 мВ	$\pm(0,5\%+5)$	±(0,8%+5)
200 B	100 мВ		±(0,0%+3)
700 B	1 B	±(1,2	%+7)

Входной импеданс:

1 МОм – на пределах измерения 200 мВ и 2 В.

10 МОм – на остальных пределах измерения.

Частотный диапазон: 40–400 Гц (на пределах измерения 200 В и 700 В диапазон 40–100 Гц).

Защита от перегрузки:

250 В – на пределах измерения 200 мВ и 2 В.

1000 В - на остальных пределах измерения.

Отображается: среднее значение (калибровка по синусоидальному сигналу).

4.3. Постоянный ток

Предел измерения	Разрешение	Точность
20 мкА	0,1 мА	±(1,2%+5)
20 мА	1 мА	±(0,8%+5)
200 мА	10 мА	±(1,2%+5)
10 A	100 мА	±(2%+5)

Защита от перегрузки:

Предохранитель 0.2A/250 В на выходе mA. На выходе 10 А. защиты предохранителем нет.

Максимальный входной ток: 10 A (длительность измерения не более 10 c).

При измерении падения напряжения: диапазон 200 мВ.

4.4. Переменный ток

ii ii riopoliioliii lok			
Предел	Разрешение	Точность	
Измерения		BM9205	BM9208
20 мА	10 мкА	±(1,2%+5)	-
200 мА	100 мкА	±(1,8	%+5)
10 A	100 мА	±(3°	% +7)

Защита от перегрузки:

Предохранитель 0.2A/250 В на выходе mA. На выходе 10 А. защиты предохранителем нет.

Максимальный входной ток: 10 A (длительность измерения не более 10 c).

При измерении падения напряжения: диапазон 200 мВ.

Частотный диапазон: 40-400 Гц.

Отображается: среднее значение (калибровка по синусоидальному сигналу).

4.5. Сопротивление

Предел измерения	Разрешение	Точность
200 Ом	0,1 Ом	
2 кОм	1 Ом	
20 кОм	10 Ом	±(0,8%+5)
200 кОм	100 Ом	
2 МОм	1 кОм	
20 МОм	10 кОм	±(1%+5)
200 МОм	100 кОм	±(5%+10)-10

Защита от перегрузки: 220 В

Напряжение в разомкнутой цепи: < 1 В (на пределе измерения 200 МОм – 2,8 В)

При замыкании измерительных щупов на пределе измерения 200 МОм на дисплее отображается примерно 10. Действительное значение изменяемого сопротивления: «отображаемое значение – 10».

Например: измеряется эталонное сопротивление в 100 МОм. При этом на дисплее отображается 101,0, а истинное значение составит 101,0-10=100,0

4.6. Емкость (Сх)

Предел измерения	Разрешение	Точность
20 пФ	10 пФ	
200 нФ	100 пФ	±(2,5%+20)
2 мкФ	1 нФ	
200 мкФ	100 нФ	±(5%+10)

Защита от перегрузки: постоянное или пиковое напряжение 36 В

4.7. Частота (F)

Предел измерения	Разрешение	Точность BM9208
2 кГц	1 Гц	
20 кГц	10 Гц	±(1,5%+5)

Допустимое значение входного сигнала: 300 мВ – 10 В Защита от перегрузки: напряжение 220 В

4.8. Температура (°С)

Предел измерения	Разрешение	Точность
		BM9208
-20-400°C	1ºC	±(0,75%+4)
401-1000°C	1ºC	±(1,5%+15)

4.9. Измерение коэффициента передачи транзисторов (hFE)

Режим	Описание	Условия
измерения		тестирования
hFE	Диапазон отображаемых значений 0-1000β	Ток базы около 10 мкА. Напряжение коллектор- эмиттер около 2,8 В

4.10. Проверка диодов и прозвонка электрических цепей

Режим	Описание	Условия
измерения		тестирования
->+	Отображается приблизительное падение напряжения на диоде в режиме прямого тока	Прямой ток: около 1 мА Напряжение: в режиме обратного тока около 2,8 В
01))	Когда сопротивление цепи меньше 50 Ом, раздается звуковой сигнал, а на дисплее отображается округленное значение сопротивления	Напряжение в разомк- нутой цепи: около 2,8 В

Защита от перегрузки: напряжение 220 В

4.11. Обнаружение инфракрасного сигнала дистанционного управления (३) и напряжения в цепи

(см. инструкции)

5. Инструкции по работе с прибором

Перед началом работы с прибором обратите внимание на символ возле входного гнезда измерительного щупа \triangle , который напоминает о том, что измеряемые напряжение и ток не должны превышать указанных в технических характеристиках величин. Кроме того, перед началом работы переключатель режимов работы мультиметра должен быть установлен на требуемые функцию и предел измерения.

5.1. Измерение постоянного напряжения

- 1) Вставьте черный измерительный провод в гнездо COM, а красный измерительный провод в гнездо V/Ω .
- 2) Оцените максимальное значение измеряемого напряжения, установите соответствующий предел измерения и подсоедините измерительные провода к обследуемой нагрузке или источнику сигнала. Считайте результат измерения с дисплея.

Вместе с результатом измерения на дисплее будет автоматически отображаться полярность красного измерительного щупа.

Примечания:

- а) Если возможности оценить величину сигнала до начала измерений не имеется, то вначале следует установить максимальный предел измерения (1000 В), а затем выбрать нужный предел в соответствии с результатом измерения.
- б) Если на дисплее отображается только «1», это означает, что измеренное значение превышает выбранный предел измерения, и необходимо переключиться на более высокий предел измерения. Напряжение выше 1000 В на входы мультиметра подавать нельзя. Хотя результат измерения и может быть получен, существует опасность повреждения внутренних схем мультиметра и несчастных случаев.

в) Во избежание поражения электрическим током при измерении высокого напряжения будьте особенно осторожны.

5.2. Измерение переменного напряжения

- 1) Вставьте черный измерительный провод в гнездо СОМ, а красный измерительный провод в гнездо V/Ω .
- 2) Оцените максимальное значение измеряемого напряжения, установите соответствующий предел измерения и подсоедините измерительные провода к обследуемой нагрузке или источнику сигнала. Считайте результат измерения с дисплея.

Примечания:

Обратитесь к примечаниям а), б) и в) в пункте 5.1.

5.3. Измерение постоянного тока

- 1) Вставьте черный измерительный провод в гнездо СОМ. Если измеряемый ток меньше 200 мА, красный измерительный провод вставляется в гнездо mA, если же ток лежит в пределах 200 мА 10 A в гнездо 10 A.
- 2) Установите переключатель режимов в положение, соответствующее измерению постоянного тока (DC). Провода подключаются к обследуемой цепи последовательно. Вместе с результатом измерения на дисплее отобразится полярность красного измерительного щупа.

Примечания:

- а) Если возможности оценить величину сигнала до начала измерений не имеется, то вначале следует установить максимальный предел измерения (10 A), а затем выбрать нужный предел в соответствии с результатом измерения.
- б) Если на дисплее отображается только «1», это означает, что измеренное значение превышает выбранный предел измерения, и необходимо переключиться на более высокий предел измерения.
- в) Максимальный допустимый ток для входного гнезда mA составляет 200 мA.
- г) Вход 10 А не защищен предохранителем, длительность измерения не должна превышать 10 секунд во избежании увеличения погрешности измерения, вызванной разогревом проводов.

5.4. Измерение переменного тока

- 1) Вставьте черный измерительный провод в гнездо СОМ. Если измеряемый ток меньше 200 мА, красный измерительный провод вставляется в гнездо mA, если же ток лежит в пределах 200 мА 10~A-B гнездо 10~A.
- 2) Установите переключатель режимов в положение, соответствующее измерению переменного тока (АС) и выберите предел измерения. Провода подключаются к обследуемой цепи последовательно.

Примечания:

Обратитесь к примечаниям а), б), в) и г) в пункте 5.3.

5.5. Измерение сопротивления

- 1) Вставьте черный измерительный провод в гнездо COM, а красный измерительный провод в гнездо V/Ω .
- 2) Установите переключатель режимов в сектор Ω и подсоедините измерительные провода параллельно к обследуемой цепи.

Примечания:

- а) При измерении сопротивления выше 1 МОм показание мультиметра может стабилизироваться несколько секунд. Это нормально для измерения больших сопротивлений.
- б) При измерении больших сопротивлений резистор следует вставлять в гнезда V/Ω и СОМ для устранения помех.
- в) При измерении сопротивления резистора, находящегося в составе электрической цепи, прежде чем выполнять измерение, удостоверьтесь, что в цепи отключен ток, и все конденсаторы полностью разряжены.
- г) При замыкании измерительных щупов на пределе измерения 200 МОм на дисплее отображается примерно 10. Действительное значение изменяемого сопротивления: «отображаемое значение 10».

5.6. Измерение емкости

- 1) Вставьте черный измерительный провод в гнездо СОМ, а красный измерительный провод в гнездо mA.
- 2) Установите переключатель режимов в сектор F и подсоедините измерительные провода параллельно к обследуемой цепи.

Примечания:

а) Прежде чем подсоединять емкость к мультиметру, его следует откалибровать на нулевое значение. Однако, несколько отображаемых единиц младшего разряда не ухудшат точности измерений.

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ: ВМ920

б) Не подавайте напряжение и не подключайте заряженный конденсатор к гнездам для измерения емкости. Если заряд конденсатора достаточно велик, он начнет разряжаться через внутренние схемы мультиметра, что ухудшит точность измерений и даже может вывести прибор из строя.

5.7. Измерение частоты

- 1) Вставьте черный измерительный провод в гнездо СОМ, а красный измерительный провод в гнездо $V/\Omega.$
- 2) Установите переключатель режимов на соответствующий измерительный диапазон и подсоедините измерительные провода параллельно к обследуемой цепи.

Примечания:

- а) Диапазон допустимых значений входного сигнала: 300 мВ 10 В
- б) Защита от перегрузки рассчитана на напряжения до 220 В.

5.8. Измерение температуры (только в модели ВМ9208)

- 1) Вставьте черный вывод термопары типа К в гнездо СОМ, а красный измерительный провод в гнездо mA..
- 2) Рабочий конец термопары (часто называемый «горячим» концом) помещается в обследуемую среду, и результат измерения отображается на дисплее.

Примечания:

- а) Диапазон допустимых значений входного сигнала: 200 мВ-10 В
- б) Если термопара не подключена к входным гнездам мультиметра, показание дисплея не несет никакой информации. Предельная температура для поставляемой с прибором контактной термопары типа К WRNM-010 составляет 250°C (при кратковременных измерениях до 300°C).

5.9. Измерение коэффициента передачи транзисторов (hFE)

- 1) Установите переключатель режимов в положение hFE.
- 2) Удостоверьтесь, что транзистор относится к типу PNP или NPN и вставьте контакты эмиттера, базы и коллектора в соответствующие гнезда на мультиметре $(E, B \ u \ C)$.
- 3) На дисплее отобразится округленное значение коэффициента передачи транзистора (hFE). Параметры измерения: ток базы около 10 мкА.; напряжение коллектор-эмиттер около 2,8 В.

5.10. Проверка диодов

- 1) Вставьте черный измерительный провод в гнездо COM, а красный измерительный провод в гнездо V/Ω (полярность красного измерительного щупа: «+»).
- 2) Установите переключатель режимов в положение « → » и подсоедините измерительные провода к обследуемому диоду.

Примечания:

- а) Если измерительная цепь разомкнута, на дисплее отображается «1».
- б) Отображаемое на дисплее значение это падение напряжения в режиме прямого тока. Если диод подсоединен наоборот, результат выходит за пределы измерения.

5.11. Прозвонка электрических цепей

- 1) Вставьте черный измерительный провод в гнездо СОМ, а красный измерительный провод в гнездо V/Ω .
- 2) Установите переключатель режимов в положение ••1) и подсоедините измерительные провода параллельно к обследуемой цепи.
- 3) Если сопротивление между точками подсоединения измерительных проводов менее 50 Ом, прибор подаст звуковой сигнал.

Примечания:

а) Целостность обследуемой цепи следует проверять при отключенном напряжении в ней. Любой сигнал в цепи вызовет срабатывание звукового сигнала, что может привести к неправильной оценке состояния цепи.

5.12. Обнаружение инфракрасного сигнала дистанционного управления (\$\mathbb{L}\)

Эта функция предназначена для проверки правильности работы инфракрасных передатчиков устройств дистанционного управления. При работе в этом режиме поместите излучающую головку устройства вертикально рядом с приемником инфракрасного излучения, расположенным под выключателем питания мультиметра, сохраняя отклонение по углу не более $\pm 15^\circ$, и нажмите на кнопку дистанционного управления. Если в этот момент мигает красный светодиод, это означает, что ИК передатчик функционирует нормально. Перемещайте передатчик на определенное расстояние (1-30 см) чтобы оценить уровень выходной мощности передатчика.

Примечания:

- а) Когда головка приемника оказывается под прямыми лучами яркого света, красный индикатор загорается, а интенсивность его свечения будет изменяться в зависимости от яркости падающего на приемник света (это база для измерителя освещенности). Поэтому при оценке состояния инфракрасных устройств дистанционного управления ИК приемник мультиметра не должен находиться вблизи источников яркого света.
- б) Излучающая головка устройства дистанционного управления должна быть перпендикулярна к ИК приемнику мультиметра (максимальное угловое отклонение $-\pm15^\circ$).

5.13. Детектирование напряжения в цепи (▲)

Вставьте черный измерительный провод в гнездо СОМ, а красный измерительный провод – в гнездо V/Ω. Одной рукой возьмитесь за изолированную часть черного измерительного щупа и не касайтесь им обследуемой проводки. Значок «▲» отображается на дисплее, если красный измерительный щуп касается провода под напряжением, и не отображается, когда щуп касается нулевого провода или заземления.

Примечание:

Значок обнаружения напряжения в цепи «▲» не может быть зафиксирован

5.14. Функция фиксации показания дисплея

При нажатии кнопки «DH» текущее показание мультиметра фиксируется на дисплее. Когда кнопка отпущена, прибор возвращается в обычный режим работы.

Примечание:

Значок обнаружения напряжения в цепи «▲» не может быть зафиксирован

5. Комплект поставки

1. Инструкция по эксплуатации	1 шт.
2. Измерительные щупы	1 пара
3. Защитная трубка из ПВХ	1 шт.
4. Термопара типа К (только для ВМ9208)	1 шт.