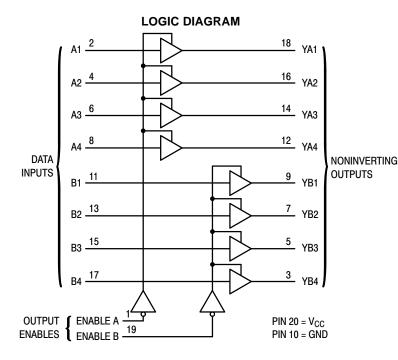
Octal 3-State Noninverting Buffer/Line Driver/ Line Receiver

High–Performance Silicon–Gate CMOS


The MC74HC244A is identical in pinout to the LS244. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

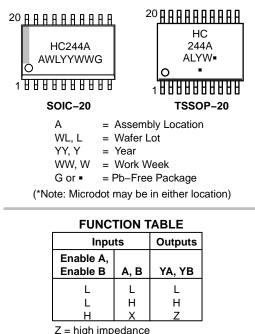
This octal noninverting buffer/line driver/line receiver is designed to be used with 3-state memory address drivers, clock drivers, and other bus-oriented systems. The device has noninverting outputs and two active-low output enables.

The HC244A is similar in function to the HC240A.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 136 FETs or 34 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®


http://onsemi.com

PIN ASSIGNMENT

-			•
ENABLE A	1●	20	□ v _{cc}
A1 [2	19	ENABLE B
ΥВ4 [3	18	D YA1
A2 [4	17	р в4
ҮВЗ 🛛	5	16	D YA2
A3 [6	15	🛛 ВЗ
YB2 [7	14	🛛 ҮАЗ
A4 [8	13	р в2
YB1 [9	12	D YA4
GND [10	11	<u>р</u> В1

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
Vout	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Current, per Pin	±35	mA
I _{CC}	DC Supply Current, V_{CC} and GND Pins	±75	mA
I _{IK}	Input Clamp Current ($V_I < 0$ or $V_I > V_{CC}$)	±20	mA
I _{OK}	Output Clamp Current ($V_O < 0$ or $V_O > V_{CC}$)	±20	mA
PD	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds (SOIC, SSOP or TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C

TSSOP Package: -6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		0	V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	(Figure 1) V _{CC}	= 2.0 V = 4.5 V = 6.0 V	0 0 0	1000 500 400	ns

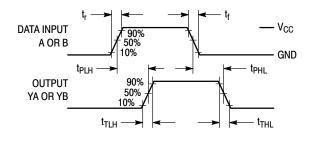
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

MC74HC244A

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	v _{cc} v	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$\begin{aligned} V_{out} = V_{CC} - 0.1 V \\ I_{out} \le 20 \ \mu A \end{aligned} \label{eq:vout}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low–Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \ V \\ I_{out} \leq 20 \ \mu A \end{array}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
V _{OH}	Minimum High–Level Output Voltage	$V_{in} = V_{IH}$ $ I_{out} \le 20 \ \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$ \begin{aligned} V_{in} = V_{IH} & I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 6.0 \text{ mA} \\ I_{out} \leq 7.8 \text{ mA} \end{aligned} $	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.2 3.7 5.2	
V _{OL}	Maximum Low–Level Output Voltage	$ \begin{array}{l} V_{in} = V_{IL} \\ I_{out} \leq 20 \ \mu A \end{array} $	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
			3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.4 0.4 0.4	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
I _{OZ}	Maximum Three-State Leakage Current	$\begin{array}{l} \text{Output in High-Impedance State} \\ \text{V}_{in} = \text{V}_{IL} \text{ or V}_{IH} \\ \text{V}_{out} = \text{V}_{CC} \text{ or GND} \end{array}$	6.0	±0.5	±5.0	±10	μΑ
ICC	Maximum Quiescent Supply Cur- rent (per Package)	$V_{in} = V_{CC} \text{ or } GND$ $I_{out} = 0 \ \mu A$	6.0	4.0	40	160	μΑ

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input $t_r = t_f = 6 \text{ ns}$)


			Guaranteed Limit			
Symbol	Parameter	V _{CC} V	–55 to 25°C	≤85°C	≤125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, A to YA or B to YB (Figures 1 and 3)	2.0 3.0 4.5 6.0	96 50 18 15	115 60 23 20	135 70 27 23	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to YA or YB (Figures 2 and 4)	2.0 3.0 4.5 6.0	110 60 22 19	140 70 28 24	165 80 33 28	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to YA or YB (Figures 2 and 4)	2.0 3.0 4.5 6.0	110 60 22 19	140 70 28 24	165 80 33 28	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 3)	2.0 3.0 4.5 6.0	60 23 12 10	75 27 15 13	90 32 18 15	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF
C _{out}	Maximum Three–State Output Capacitance (Output in High–Impedance State)	_	15	15	15	pF
			Typical @ 25°C, V _{CC} = 5.0 V		_C = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Buffer)*			34		pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Buffer)*	34	pF

* Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

MC74HC244A

SWITCHING WAVEFORMS

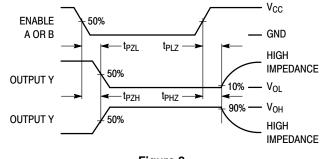
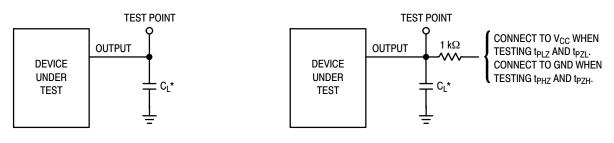



Figure 1.

TEST CIRCUITS

*Includes all probe and jig capacitance

Figure 3. Test Circuit

*Includes all probe and jig capacitance

Figure 4. Test Circuit

PIN DESCRIPTIONS

INPUTS

A1, A2, A3, A4, B1, B2, B3, B4

(Pins 2, 4, 6, 8, 11, 13, 15, 17)

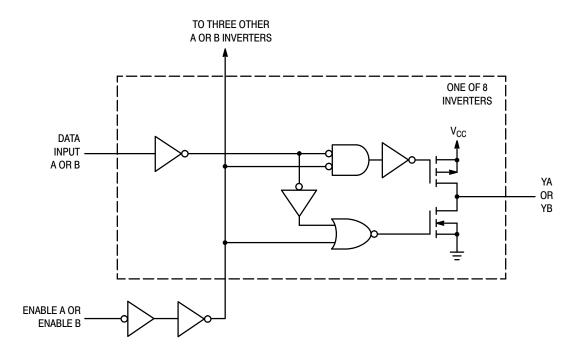
Data input pins. Data on these pins appear in noninverted form on the corresponding Y outputs, when the outputs are enabled.

CONTROLS

Enable A, Enable B (Pins 1, 19)

Output enables (active-low). When a low level is applied to these pins, the outputs are enabled and the devices

function as noninverting buffers. When a high level is applied, the outputs assume the high impedance state.


OUTPUTS

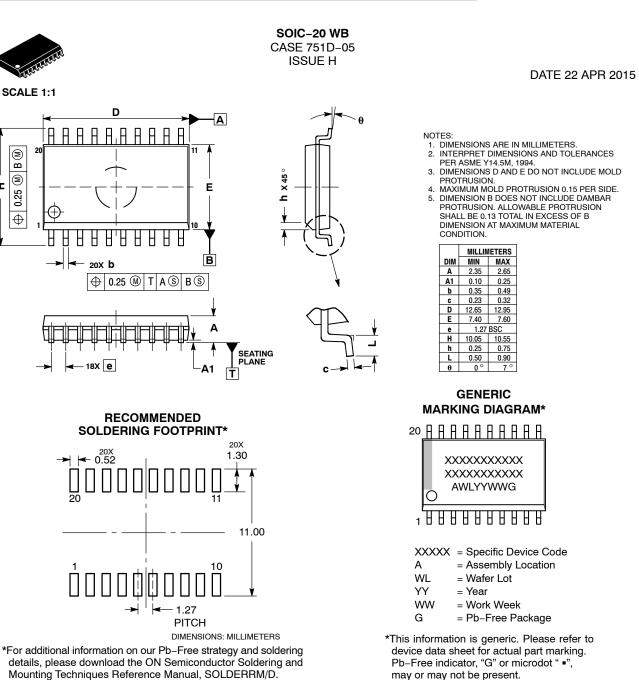
YA1, YA2, YA3, YA4, YB1, YB2, YB3, YB4 (Pins 18, 16, 14, 12, 9, 7, 5, 3)

Device outputs. Depending upon the state of the output–enable pins, these outputs are either noninverting outputs or high–impedance outputs.

MC74HC244A

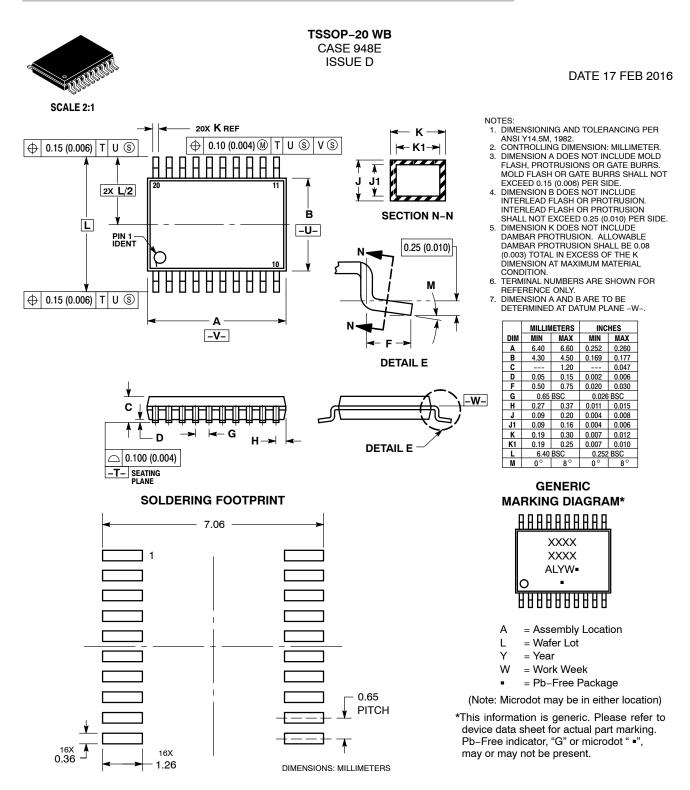
LOGIC DETAIL

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74HC244ADWG	SOIC-20 WIDE (Pb-Free)	38 Units / Rail
MC74HC244ADWR2G	SOIC-20 WIDE (Pb-Free)	1000 / Tape & Reel
MC74HC244ADTG	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74HC244ADTR2G	TSSOP-20 (Pb-Free)	2500 / Tape & Reel
NLV74HC244ADWR2G*	SOIC-20 WIDE (Pb-Free)	1000 / Tape & Reel
NLV74HC244ADTR2G*	TSSOP-20 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable


т

DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION: SOIC-20 WB		PAGE 1 OF 1			
ON Semiconductor and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights nor the rights product in the suitability of the rest of the rest.					

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1		

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right or others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC74HC244ADT MC74HC244ADTG MC74HC244ADTR2 MC74HC244ADTR2G MC74HC244ADW MC74HC244ADWG MC74HC244ADWR2 MC74HC244ADWR2G MC74HC244AF MC74HC244AFEL MC74HC244AFELG MC74HC244AFG MC74HC244AN MC74HC244ANG NLV74HC244ADWR2G NLV74HC244ADTR2G